IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v29y2017i2p167-188.html
   My bibliography  Save this article

Cramér–von Mises distance: probabilistic interpretation, confidence intervals, and neighbourhood-of-model validation

Author

Listed:
  • L. Baringhaus
  • N. Henze

Abstract

We give a probabilistic interpretation of the Cramér–von Mises distance $ \Delta (F,F_0) = \int (F-F_0)^2\,{\rm d}F_0 $ Δ(F,F0)=∫(F−F0)2dF0 between continuous distribution functions F and $ F_0 $ F0. If F is unknown, we construct an asymptotic confidence interval for $ \Delta (F,F_0) $ Δ(F,F0) based on a random sample from F. Moreover, for given $ F_0 $ F0 and some value $ \Delta _0>0 $ Δ0>0, we propose an asymptotic equivalence test of the hypothesis that $ \Delta (F,F_0) \ge \Delta _0 $ Δ(F,F0)≥Δ0 against the alternative $ \Delta (F,F_0) < \Delta _0 $ Δ(F,F0)<Δ0. If such a ‘neighbourhood-of- $ F_0 $ F0 validation test’, carried out at a small asymptotic level, rejects the hypothesis, there is evidence that F is within a distance $ \Delta _0 $ Δ0 of $ F_0 $ F0. As a neighbourhood-of-exponentiality test shows, the method may be extended to the case that $ H_0 $ H0 is composite.

Suggested Citation

  • L. Baringhaus & N. Henze, 2017. "Cramér–von Mises distance: probabilistic interpretation, confidence intervals, and neighbourhood-of-model validation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 167-188, April.
  • Handle: RePEc:taf:gnstxx:v:29:y:2017:i:2:p:167-188
    DOI: 10.1080/10485252.2017.1285029
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2017.1285029
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2017.1285029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ludwig Baringhaus & Norbert Henze, 1991. "A class of consistent tests for exponentiality based on the empirical Laplace transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(3), pages 551-564, September.
    2. Freitag, Gudrun & Munk, Axel, 2005. "On Hadamard differentiability in k-sample semiparametric models--with applications to the assessment of structural relationships," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 123-158, May.
    3. Axel Munk & Claudia Czado, 1998. "Nonparametric validation of similar distributions and assessment of goodness of fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 223-241.
    4. Norbert Henze & Simos G. Meintanis, 2005. "Recent and classical tests for exponentiality: a partial review with comparisons," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(1), pages 29-45, February.
    5. Holger Dette & Axel Munk, 2003. "Some Methodological Aspects of Validation of Models in Nonparametric Regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(2), pages 207-244, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Baringhaus & D. Gaigall & J. P. Thiele, 2018. "Statistical inference for $$L^2$$ L 2 -distances to uniformity," Computational Statistics, Springer, vol. 33(4), pages 1863-1896, December.
    2. Steffen Betsch & Bruno Ebner, 2019. "A new characterization of the Gamma distribution and associated goodness-of-fit tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 779-806, October.
    3. Steffen Betsch & Bruno Ebner, 2020. "Testing normality via a distributional fixed point property in the Stein characterization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 105-138, March.
    4. Alessandro Barbiero & Asmerilda Hitaj, 2023. "Discrete approximations of continuous probability distributions obtained by minimizing Cramér-von Mises-type distances," Statistical Papers, Springer, vol. 64(5), pages 1669-1697, October.
    5. Neil Shephard, 2020. "An estimator for predictive regression: reliable inference for financial economics," Papers 2008.06130, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    2. Rippl, Thomas & Munk, Axel & Sturm, Anja, 2016. "Limit laws of the empirical Wasserstein distance: Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 90-109.
    3. Baringhaus, L. & Henze, N., 2008. "A new weighted integral goodness-of-fit statistic for exponentiality," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 1006-1016, June.
    4. Bojana Milošević & Marko Obradović, 2016. "New class of exponentiality tests based on U-empirical Laplace transform," Statistical Papers, Springer, vol. 57(4), pages 977-990, December.
    5. Baringhaus, Ludwig & Taherizadeh, Fatemeh, 2010. "Empirical Hankel transforms and its applications to goodness-of-fit tests," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1445-1457, July.
    6. Gerrit Lodewicus Grobler & Elzanie Bothma & James Samuel Allison, 2022. "Testing for the Rayleigh Distribution: A New Test with Comparisons to Tests for Exponentiality Based on Transformed Data," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    7. del Barrio, Eustasio & Gordaliza, Paula & Lescornel, Hélène & Loubes, Jean-Michel, 2019. "Central limit theorem and bootstrap procedure for Wasserstein’s variations with an application to structural relationships between distributions," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 341-362.
    8. Haywood, John & Khmaladze, Estate, 2008. "On distribution-free goodness-of-fit testing of exponentiality," Journal of Econometrics, Elsevier, vol. 143(1), pages 5-18, March.
    9. J. S. Allison & L. Santana & N. Smit & I. J. H. Visagie, 2017. "An ‘apples to apples’ comparison of various tests for exponentiality," Computational Statistics, Springer, vol. 32(4), pages 1241-1283, December.
    10. M. Cockeran & S. G. Meintanis & L. Santana & J. S. Allison, 2021. "Goodness-of-fit testing of survival models in the presence of Type–II right censoring," Computational Statistics, Springer, vol. 36(2), pages 977-1010, June.
    11. Simos G. Meintanis & Bojana Milošević & Marko Obradović, 2020. "Goodness-of-fit tests in conditional duration models," Statistical Papers, Springer, vol. 61(1), pages 123-140, February.
    12. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Jovanović, Milan & Milošević, Bojana & Nikitin, Ya. Yu. & Obradović, Marko & Volkova, K. Yu., 2015. "Tests of exponentiality based on Arnold–Villasenor characterization and their efficiencies," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 100-113.
    14. Noh, Hohsuk & El Ghouch, Anouar & Van Keilegom, Ingrid, 2013. "Assessing model adequacy in possibly misspecified quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 558-569.
    15. Sudheesh K. Kattumannil & P. Anisha, 2019. "A simple non-parametric test for decreasing mean time to failure," Statistical Papers, Springer, vol. 60(1), pages 73-87, February.
    16. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    17. Axel Munk & Tatyana Krivobokova, 2009. "Comments on: Goodness-of-fit tests in mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 256-259, August.
    18. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    19. Nora Gürtler & Norbert Henze, 2000. "Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 267-286, June.
    20. Genest Christian & Scherer Matthias, 2019. "The world of vines: An interview with Claudia Czado," Dependence Modeling, De Gruyter, vol. 7(1), pages 169-180, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:29:y:2017:i:2:p:167-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.