IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v82y2019i7d10.1007_s00184-019-00708-7.html
   My bibliography  Save this article

A new characterization of the Gamma distribution and associated goodness-of-fit tests

Author

Listed:
  • Steffen Betsch

    (Karlsruhe Institute of Technology)

  • Bruno Ebner

    (Karlsruhe Institute of Technology)

Abstract

We propose a class of weighted $$L^2$$ L 2 -type tests of fit to the Gamma distribution. Our novel procedure is based on a fixed point property of a new transformation connected to a Steinian characterization of the family of Gamma distributions. We derive the weak limits of the statistic under the null hypothesis and under contiguous alternatives. The result on the limit null distribution is used to prove the asymptotic validity of the parametric bootstrap that is implemented to run the tests. Further, we establish the global consistency of our tests in this bootstrap setting, and conduct a Monte Carlo simulation study to show the competitiveness to existing test procedures.

Suggested Citation

  • Steffen Betsch & Bruno Ebner, 2019. "A new characterization of the Gamma distribution and associated goodness-of-fit tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 779-806, October.
  • Handle: RePEc:spr:metrik:v:82:y:2019:i:7:d:10.1007_s00184-019-00708-7
    DOI: 10.1007/s00184-019-00708-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-019-00708-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-019-00708-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Baringhaus & N. Henze, 2017. "Cramér–von Mises distance: probabilistic interpretation, confidence intervals, and neighbourhood-of-model validation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 167-188, April.
    2. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    3. Baringhaus, Ludwig & Gaigall, Daniel, 2015. "On an independence test approach to the goodness-of-fit problem," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 193-208.
    4. Baringhaus, L. & Henze, N., 2008. "A new weighted integral goodness-of-fit statistic for exponentiality," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 1006-1016, June.
    5. Chen, Xiaohong & White, Halbert, 1998. "Central Limit And Functional Central Limit Theorems For Hilbert-Valued Dependent Heterogeneous Arrays With Applications," Econometric Theory, Cambridge University Press, vol. 14(2), pages 260-284, April.
    6. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    7. Eustasio Barrio & Juan Cuesta-Albertos & Carlos Matrán & Sándor Csörgö & Carles Cuadras & Tertius Wet & Evarist Giné & Richard Lockhart & Axel Munk & Winfried Stute, 2000. "Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(1), pages 1-96, June.
    8. J. S. Allison & L. Santana & N. Smit & I. J. H. Visagie, 2017. "An ‘apples to apples’ comparison of various tests for exponentiality," Computational Statistics, Springer, vol. 32(4), pages 1241-1283, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
    2. Shaul K. Bar-Lev & Apostolos Batsidis & Jochen Einbeck & Xu Liu & Panpan Ren, 2023. "Cumulant-Based Goodness-of-Fit Tests for the Tweedie, Bar-Lev and Enis Class of Distributions," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    3. Steffen Betsch & Bruno Ebner, 2021. "Fixed point characterizations of continuous univariate probability distributions and their applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 31-59, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Betsch & Bruno Ebner, 2020. "Testing normality via a distributional fixed point property in the Stein characterization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 105-138, March.
    2. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    3. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    4. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    5. Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
    6. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    7. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    8. L. Baringhaus & D. Gaigall & J. P. Thiele, 2018. "Statistical inference for $$L^2$$ L 2 -distances to uniformity," Computational Statistics, Springer, vol. 33(4), pages 1863-1896, December.
    9. Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    10. Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
    11. R. Anton Braun & Huiyu Li & John Stachurski, 2012. "Generalized Look-Ahead Methods for Computing Stationary Densities," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 489-500, August.
    12. James S. Allison & Steffen Betsch & Bruno Ebner & Jaco Visagie, 2022. "On Testing the Adequacy of the Inverse Gaussian Distribution," Mathematics, MDPI, vol. 10(3), pages 1-18, January.
    13. M. Dolores Jiménez-Gamero, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 893-897, December.
    14. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    15. J. A. Cuesta-Albertos & C. Matrán & J. Rodríguez-Rodríguez, 2003. "Approximation to Probabilities Through Uniform Laws on Convex Sets," Journal of Theoretical Probability, Springer, vol. 16(2), pages 363-376, April.
    16. Chen Xiaohong & White Halbert, 2002. "Asymptotic Properties of Some Projection-based Robbins-Monro Procedures in a Hilbert Space," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(1), pages 1-55, April.
    17. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    18. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    19. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    20. Rippl, Thomas & Munk, Axel & Sturm, Anja, 2016. "Limit laws of the empirical Wasserstein distance: Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 90-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:82:y:2019:i:7:d:10.1007_s00184-019-00708-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.