IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v25y2013i3p561-571.html
   My bibliography  Save this article

Density estimation and nonparametric inferences using maximum likelihood weighted kernels

Author

Listed:
  • Alan Huang

Abstract

We show that maximum likelihood weighted kernel density estimation offers a unified approach to density estimation and nonparametric inferences. For density estimation, the approach is a generalisation of the standard kernel density estimator that allows the weights attached to each kernel to be chosen by maximum likelihood, instead of being set to n -super- - 1 from the outset (see also Jones, M.C., and Henderson, D.A. (2005), 'Maximum Likelihood Kernel Density Estimation', Technical Report 01/05, Department of Statistics, The Open University, UK). For nonparametric inferences, the approach offers a natural, smoothed analogue to empirical likelihood (Owen, A.B. (2001), Empirical Likelihood , Boca Raton, FL: Chapman and Hall/CRC) for inferences on functionals of the underlying distribution, such as its mean or median. Numerical results demonstrate that the proposed method is comparable to the standard kernel density estimator (of the same bandwidth) for density estimation, but can offer noticeable small-sample improvements over empirical likelihood for inferences when the underlying distribution is continuous.

Suggested Citation

  • Alan Huang, 2013. "Density estimation and nonparametric inferences using maximum likelihood weighted kernels," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(3), pages 561-571, September.
  • Handle: RePEc:taf:gnstxx:v:25:y:2013:i:3:p:561-571
    DOI: 10.1080/10485252.2013.797090
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2013.797090
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2013.797090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ao Yuan, 2009. "Semiparametric inference with kernel likelihood," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 207-228.
    2. Murphy, S. A. & van der Vaart, A. W., 2001. "Semiparametric Mixtures in Case-Control Studies," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 1-32, October.
    3. Marco Di Marzio, 2004. "Boosting kernel density estimates: A bias reduction technique?," Biometrika, Biometrika Trust, vol. 91(1), pages 226-233, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Weixin, 2012. "A bias corrected nonparametric regression estimator," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 274-282.
    2. Zhiwei Zhang & Howard Rockette, 2006. "Semiparametric Maximum Likelihood for Missing Covariates in Parametric Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 687-706, December.
    3. Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
    4. Guang Cheng, 2015. "Moment Consistency of the Exchangeably Weighted Bootstrap for Semiparametric M-estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 665-684, September.
    5. Cheng, Guang & Kosorok, Michael R., 2009. "The penalized profile sampler," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 345-362, March.
    6. Christopher Withers & Saralees Nadarajah, 2013. "Density estimates of low bias," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 357-379, April.
    7. Kairat Mynbaev & Carlos Martins-Filho, 2010. "Bias reduction in kernel density estimation via Lipschitz condition," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 219-235.
    8. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    9. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
    10. Suhyun Kang & Wenbin Lu & Mengling Liu, 2017. "Efficient estimation for accelerated failure time model under case-cohort and nested case-control sampling," Biometrics, The International Biometric Society, vol. 73(1), pages 114-123, March.
    11. Robin, Stephane & Bar-Hen, Avner & Daudin, Jean-Jacques & Pierre, Laurent, 2007. "A semi-parametric approach for mixture models: Application to local false discovery rate estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5483-5493, August.
    12. Masao Ueki & Kaoru Fueda, 2010. "Boosting local quasi-likelihood estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 235-248, April.
    13. Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
    14. Zhang, Jun & Lin, Bingqing & Zhou, Yan, 2021. "Kernel density estimation for partial linear multivariate responses models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:25:y:2013:i:3:p:561-571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.