IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i2p274-282.html
   My bibliography  Save this article

A bias corrected nonparametric regression estimator

Author

Listed:
  • Yao, Weixin

Abstract

In this article, we propose a new method of bias reduction in nonparametric regression estimation. The proposed new estimator has asymptotic bias order h4, where h is a smoothing parameter, in contrast to the usual bias order h2 for the local linear regression. In addition, the proposed estimator has the same order of the asymptotic variance as the local linear regression. Our proposed method is closely related to the bias reduction method for kernel density estimation proposed by Chung and Lindsay (2011). However, our method is not a direct extension of their density estimate, but a totally new one based on the bias cancelation result of their proof.

Suggested Citation

  • Yao, Weixin, 2012. "A bias corrected nonparametric regression estimator," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 274-282.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:2:p:274-282
    DOI: 10.1016/j.spl.2011.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211003270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linton, Oliver & Nielsen, Jens Perch, 1994. "A multiplicative bias reduction method for nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 19(3), pages 181-187, February.
    2. Marco Di Marzio, 2004. "Boosting kernel density estimates: A bias reduction technique?," Biometrika, Biometrika Trust, vol. 91(1), pages 226-233, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    2. Xinyang Yu & Cheng Wang & Zhongqing Yang & Binyan Jiang, 2022. "Tuning selection for two-scale kernel density estimators," Computational Statistics, Springer, vol. 37(5), pages 2231-2247, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    2. Jens Perch Nielsen & Carsten Tanggaard & M.C. Jones, 2007. "Local Linear Density Estimation for Filtered Survival Data, with Bias Correction," CREATES Research Papers 2007-13, Department of Economics and Business Economics, Aarhus University.
    3. Bischofberger, Stephan M. & Hiabu, Munir & Mammen, Enno & Nielsen, Jens Perch, 2019. "A comparison of in-sample forecasting methods," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 133-154.
    4. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.
    5. Alan Huang, 2013. "Density estimation and nonparametric inferences using maximum likelihood weighted kernels," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(3), pages 561-571, September.
    6. Scholz, Michael & Nielsen, Jens Perch & Sperlich, Stefan, 2015. "Nonparametric prediction of stock returns based on yearly data: The long-term view," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 143-155.
    7. Kairat Mynbaev & Carlos Martins-Filho, 2010. "Bias reduction in kernel density estimation via Lipschitz condition," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 219-235.
    8. Wenzhuan Zhang & Yingcun Xia, 2012. "Twicing local linear kernel regression smoothers," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 399-417.
    9. Naito, Kanta & Yoshizaki, Masahiro, 2009. "Bandwidth selection for a data sharpening estimator in nonparametric regression," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1465-1486, August.
    10. Funke, Benedikt & Hirukawa, Masayuki, 2021. "Bias correction for local linear regression estimation using asymmetric kernels via the skewing method," Econometrics and Statistics, Elsevier, vol. 20(C), pages 109-130.
    11. Christopher Withers & Saralees Nadarajah, 2013. "Density estimates of low bias," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 357-379, April.
    12. Nielsen, Jens Perch & Tanggaard, Carsten & Jones, M. C., 2003. "Local Linear Density Estimation for Filtered Survival Data, with Bias Correction," Finance Working Papers 03-9, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    13. Perch Nielsen, Jens & Tanggaard, Carsten, 2000. "Boundary and Bias Correction in Kernel Hazard Estimation," Finance Working Papers 00-7, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    14. Oliver Linton, 1997. "Second Order Approximation in a Linear Regression with Heteroskedasticity for Unknown Form," Cowles Foundation Discussion Papers 1151, Cowles Foundation for Research in Economics, Yale University.
    15. Robin, Stephane & Bar-Hen, Avner & Daudin, Jean-Jacques & Pierre, Laurent, 2007. "A semi-parametric approach for mixture models: Application to local false discovery rate estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5483-5493, August.
    16. Masao Ueki & Kaoru Fueda, 2010. "Boosting local quasi-likelihood estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 235-248, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:2:p:274-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.