IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i3p345-362.html
   My bibliography  Save this article

The penalized profile sampler

Author

Listed:
  • Cheng, Guang
  • Kosorok, Michael R.

Abstract

The penalized profile sampler for semiparametric inference is an extension of the profile sampler method [B.L. Lee, M.R. Kosorok, J.P. Fine, The profile sampler, Journal of the American Statistical Association 100 (2005) 960-969] obtained by profiling a penalized log-likelihood. The idea is to base inference on the posterior distribution obtained by multiplying a profiled penalized log-likelihood by a prior for the parametric component, where the profiling and penalization are applied to the nuisance parameter. Because the prior is not applied to the full likelihood, the method is not strictly Bayesian. A benefit of this approximately Bayesian method is that it circumvents the need to put a prior on the possibly infinite-dimensional nuisance components of the model. We investigate the first and second order frequentist performance of the penalized profile sampler, and demonstrate that the accuracy of the procedure can be adjusted by the size of the assigned smoothing parameter. The theoretical validity of the procedure is illustrated for two examples: a partly linear model with normal error for current status data and a semiparametric logistic regression model. Simulation studies are used to verify the theoretical results.

Suggested Citation

  • Cheng, Guang & Kosorok, Michael R., 2009. "The penalized profile sampler," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 345-362, March.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:3:p:345-362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00132-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Shuangge & Kosorok, Michael R., 2005. "Robust semiparametric M-estimation and the weighted bootstrap," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 190-217, September.
    2. Murphy, S. A. & van der Vaart, A. W., 2001. "Semiparametric Mixtures in Case-Control Studies," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 1-32, October.
    3. Shuangge Ma & Michael Kosorok, 2006. "Adaptive penalized M-estimation with current status data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(3), pages 511-526, September.
    4. Shen X., 2002. "Asymptotic Normality of Semiparametric and Nonparametric Posterior Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 222-235, March.
    5. Lee, Bee Leng & Kosorok, Michael R. & Fine, Jason P., 2005. "The Profile Sampler," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 960-969, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guang Cheng, 2013. "How Many Iterations are Sufficient for Efficient Semiparametric Estimation?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 592-618, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessica G. Young & Nicholas P. Jewell & Steven J. Samuels, 2008. "Regression Analysis of a Disease Onset Distribution Using Diagnosis Data," Biometrics, The International Biometric Society, vol. 64(1), pages 20-28, March.
    2. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    3. Giovanni Compiani & Philip Haile & Marcelo Sant’Anna, 2020. "Common Values, Unobserved Heterogeneity, and Endogenous Entry in US Offshore Oil Lease Auctions," Journal of Political Economy, University of Chicago Press, vol. 128(10), pages 3872-3912.
    4. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    5. Gianluca Frasso & Jonathan Jaeger & Philippe Lambert, 2016. "Parameter estimation and inference in dynamic systems described by linear partial differential equations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 259-287, July.
    6. Demian Pouzo, 2014. "Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension," Papers 1411.2701, arXiv.org, revised Aug 2015.
    7. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    8. Yichen Lou & Peijie Wang & Jianguo Sun, 2023. "A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 628-653, July.
    9. Sukjin Han & Sungwon Lee, 2019. "Estimation in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 994-1015, September.
    10. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    11. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
    12. Pedro H. C. Sant’Anna, 2021. "Nonparametric Tests for Treatment Effect Heterogeneity With Duration Outcomes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 816-832, July.
    13. Luofeng Liao & Christian Kroer, 2024. "Bootstrapping Fisher Market Equilibrium and First-Price Pacing Equilibrium," Papers 2402.02303, arXiv.org, revised Feb 2024.
    14. Harding, Matthew & Lamarche, Carlos, 2014. "A Hausman–Taylor instrumental variable approach to the penalized estimation of quantile panel models," Economics Letters, Elsevier, vol. 124(2), pages 176-179.
    15. Alan Huang, 2013. "Density estimation and nonparametric inferences using maximum likelihood weighted kernels," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(3), pages 561-571, September.
    16. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    17. Chen, Xiaohong & Liu, Ying & Ma, Shujie & Zhang, Zheng, 2024. "Causal inference of general treatment effects using neural networks with a diverging number of confounders," Journal of Econometrics, Elsevier, vol. 238(1).
    18. Eben Kenah, 2015. "Semiparametric Relative-Risk Regression for Infectious Disease Transmission Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 313-325, March.
    19. Kaplan, David M. & Zhuo, Longhao, 2021. "Frequentist properties of Bayesian inequality tests," Journal of Econometrics, Elsevier, vol. 221(1), pages 312-336.
    20. Gaëlle Chagny, 2015. "Adaptive Warped Kernel Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 336-360, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:3:p:345-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.