IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i3p665-684.html
   My bibliography  Save this article

Moment Consistency of the Exchangeably Weighted Bootstrap for Semiparametric M-estimation

Author

Listed:
  • Guang Cheng

Abstract

type="main" xml:id="sjos12128-abs-0001"> The bootstrap variance estimate is widely used in semiparametric inferences. However, its theoretical validity is a well-known open problem. In this paper, we provide a first theoretical study on the bootstrap moment estimates in semiparametric models. Specifically, we establish the bootstrap moment consistency of the Euclidean parameter, which immediately implies the consistency of t-type bootstrap confidence set. It is worth pointing out that the only additional cost to achieve the bootstrap moment consistency in contrast with the distribution consistency is to simply strengthen the L 1 maximal inequality condition required in the latter to the L p maximal inequality condition for p≥1. The general L p multiplier inequality developed in this paper is also of independent interest. These general conclusions hold for the bootstrap methods with exchangeable bootstrap weights, for example, non-parametric bootstrap and Bayesian bootstrap. Our general theory is illustrated in the celebrated Cox regression model.

Suggested Citation

  • Guang Cheng, 2015. "Moment Consistency of the Exchangeably Weighted Bootstrap for Semiparametric M-estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 665-684, September.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:665-684
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12128
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    2. Murphy, S. A. & van der Vaart, A. W., 2001. "Semiparametric Mixtures in Case-Control Studies," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 1-32, October.
    3. Yoichi Nishiyama, 2010. "Moment convergence of M‐estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(4), pages 505-507, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Galeano & Dominik Wied, 2017. "Dating multiple change points in the correlation matrix," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 331-352, June.
    2. Jean-Jacques Forneron, 2022. "Estimation and Inference by Stochastic Optimization," Papers 2205.03254, arXiv.org.
    3. Forneron, Jean-Jacques, 2024. "Estimation and inference by stochastic optimization," Journal of Econometrics, Elsevier, vol. 238(2).
    4. Vanhems, Anne & Van Keilegom, Ingrid, 2019. "Estimation Of A Semiparametric Transformation Model In The Presence Of Endogeneity," Econometric Theory, Cambridge University Press, vol. 35(1), pages 73-110, February.
    5. Chunlin Wang & Paul Marriott & Pengfei Li, 2022. "A note on the coverage behaviour of bootstrap percentile confidence intervals for constrained parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 809-831, October.
    6. Inass Soukarieh & Salim Bouzebda, 2022. "Exchangeably Weighted Bootstraps of General Markov U -Process," Mathematics, MDPI, vol. 10(20), pages 1-42, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    2. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    3. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    4. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    5. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    6. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    7. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    8. Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2024. "Bootstrap Inference for Panel Data Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 628-639, April.
    9. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    10. Giovanni Compiani & Philip Haile & Marcelo Sant’Anna, 2020. "Common Values, Unobserved Heterogeneity, and Endogenous Entry in US Offshore Oil Lease Auctions," Journal of Political Economy, University of Chicago Press, vol. 128(10), pages 3872-3912.
    11. Jia-Young Michael Fu & Joel L. Horowitz & Matthias Parey, 2015. "Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions," CeMMAP working papers 68/15, Institute for Fiscal Studies.
    12. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    13. Andrews, Donald W.K., 2017. "Examples of L2-complete and boundedly-complete distributions," Journal of Econometrics, Elsevier, vol. 199(2), pages 213-220.
    14. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    15. Juan Serrato & Philippe Wingender, 2016. "Estimating Local Fiscal Multipliers," Working Papers id:11109, eSocialSciences.
    16. Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
    17. Melanie Birke & Sebastien Van Bellegem & Ingrid Van Keilegom, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 168-191, March.
    18. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    19. Hiroaki Kaido & Kaspar Wüthrich, 2021. "Decentralization estimators for instrumental variable quantile regression models," Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
    20. Vanhems, Anne & Van Keilegom, Ingrid, 2019. "Estimation Of A Semiparametric Transformation Model In The Presence Of Endogeneity," Econometric Theory, Cambridge University Press, vol. 35(1), pages 73-110, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:665-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.