IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v76y2013i3p357-379.html
   My bibliography  Save this article

Density estimates of low bias

Author

Listed:
  • Christopher Withers
  • Saralees Nadarajah

Abstract

Two methods are given for adapting a kernel density estimate to obtain an estimate of a density function with bias O(h p ) for any given p, where h=h(n) is the bandwidth and n is the sample size. The first method is standard. The second method is new and involves use of Bell polynomials. The second method is shown to yield smaller biases and smaller mean squared errors than classical kernel density estimates and those due to Jones et al. (Biometrika 82:327–338, 1995 ). Copyright Springer-Verlag 2013

Suggested Citation

  • Christopher Withers & Saralees Nadarajah, 2013. "Density estimates of low bias," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 357-379, April.
  • Handle: RePEc:spr:metrik:v:76:y:2013:i:3:p:357-379
    DOI: 10.1007/s00184-012-0392-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-012-0392-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-012-0392-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    2. Hazelton, Martin L. & Turlach, Berwin A., 2007. "Reweighted kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3057-3069, March.
    3. Kairat Mynbaev & Carlos Martins-Filho, 2010. "Bias reduction in kernel density estimation via Lipschitz condition," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 219-235.
    4. Yoshihiko Nishiyama & Peter M. Robinson, 2005. "The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 73(3), pages 903-948, May.
    5. Marco Di Marzio, 2004. "Boosting kernel density estimates: A bias reduction technique?," Biometrika, Biometrika Trust, vol. 91(1), pages 226-233, March.
    6. Stephan R. Sain & David W. Scott, 2002. "Zero‐Bias Locally Adaptive Density Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 441-460, September.
    7. Hazelton, Martin L., 1998. "Bias annihilating bandwidths for kernel density estimation at a point," Statistics & Probability Letters, Elsevier, vol. 38(4), pages 305-309, July.
    8. Peter Hall & Michael C. Minnotte, 2002. "High order data sharpening for density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(1), pages 141-157, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mynbaev, Kairat T. & Nadarajah, Saralees & Withers, Christopher S. & Aipenova, Aziza S., 2014. "Improving bias in kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 106-112.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    2. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    3. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    4. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    5. SCHAFGANS, Marcia M.A. & ZINDE-WALSH, Victoria, 2007. "Robust Average Derivative Estimation," Cahiers de recherche 12-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    6. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    7. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    8. Martins-Filho, Carlos & Ziegelmann, Flávio Augusto & Torrent, Hudson da Silva, 2013. "Local Exponential Frontier Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 33(2), November.
    9. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    10. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    11. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Gospodinov, Nikolay & Hirukawa, Masayuki, 2012. "Nonparametric estimation of scalar diffusion models of interest rates using asymmetric kernels," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 595-609.
    13. Wolski, M., 2013. "Exploring Nonlinearities in Financial Systemic Risk," CeNDEF Working Papers 13-14, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    14. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    15. Hazelton, Martin L. & Turlach, Berwin A., 2007. "Reweighted kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3057-3069, March.
    16. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    17. Matias D. Cattaneo & Max H. Farrell & Michael Jansson & Ricardo Masini, 2022. "Higher-order Refinements of Small Bandwidth Asymptotics for Density-Weighted Average Derivative Estimators," Papers 2301.00277, arXiv.org, revised Feb 2024.
    18. Henderson, Daniel J. & Parmeter, Christopher F., 2012. "Canonical higher-order kernels for density derivative estimation," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1383-1387.
    19. Alan Huang, 2013. "Density estimation and nonparametric inferences using maximum likelihood weighted kernels," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(3), pages 561-571, September.
    20. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:76:y:2013:i:3:p:357-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.