IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v23y2011i2p287-303.html
   My bibliography  Save this article

Mixtures of nonparametric autoregressions

Author

Listed:
  • J. Franke
  • J.-P. Stockis
  • J. Tadjuidje-Kamgaing
  • W. Li

Abstract

We consider data generating mechanisms which can be represented as mixtures of finitely many regression or autoregression models. We propose nonparametric estimators for the functions characterising the various mixture components based on a local quasi maximum likelihood approach and prove their consistency. We present an EM algorithm for calculating the estimates numerically which is mainly based on iteratively applying common local smoothers and discuss its convergence properties.

Suggested Citation

  • J. Franke & J.-P. Stockis & J. Tadjuidje-Kamgaing & W. Li, 2011. "Mixtures of nonparametric autoregressions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 287-303.
  • Handle: RePEc:taf:gnstxx:v:23:y:2011:i:2:p:287-303
    DOI: 10.1080/10485252.2010.539686
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2010.539686
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2010.539686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean‐Pierre Stockis & Jürgen Franke & Joseph Tadjuidje Kamgaing, 2010. "On geometric ergodicity of CHARME models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 141-152, May.
    2. J. Fan & M. Farmen & I. Gijbels, 1998. "Local maximum likelihood estimation and inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 591-608.
    3. Stockis, Jean-Pierre & Tadjuidje-Kamgaing, Joseph & Franke, Jürgen, 2008. "A note on the identifiability of the conditional expectation for the mixtures of neural networks," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 739-742, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arash Nademi & Rahman Farnoosh, 2014. "Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 275-293, February.
    2. Mark Fiecas & Jürgen Franke & Rainer von Sachs & Joseph Tadjuidje Kamgaing, 2017. "Shrinkage Estimation for Multivariate Hidden Markov Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 424-435, January.
    3. Nademi, Arash & Nademi, Younes, 2018. "Forecasting crude oil prices by a semiparametric Markov switching model: OPEC, WTI, and Brent cases," Energy Economics, Elsevier, vol. 74(C), pages 757-766.
    4. Lisandro Javier Fermin & Ricardo Rios & Luis Angel Rodriguez, 2017. "A Robbins–Monro Algorithm for Non-Parametric Estimation of NAR Process with Markov Switching: Consistency," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 809-837, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    2. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
    3. Kohler, Michael & Krzyzak, Adam, 2007. "Asymptotic confidence intervals for Poisson regression," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1072-1094, May.
    4. Bocart, Fabian Y. R. P. & Hafner, Christian M., 2012. "Volatility of price indices for heterogeneous goods," SFB 649 Discussion Papers 2012-039, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Rydlewski, Jerzy P. & Snarska, Małgorzata, 2014. "On geometric ergodicity of skewed—SVCHARME models," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 192-197.
    6. Zhang, Wenyang & Li, Degui & Xia, Yingcun, 2015. "Estimation in generalised varying-coefficient models with unspecified link functions," Journal of Econometrics, Elsevier, vol. 187(1), pages 238-255.
    7. Bocart, Fabian Y. R. P. & Hafner, Christian M., 2012. "Volatility of price indices for heterogeneous goods," SFB 649 Discussion Papers 2012-039, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Gijbels, Irène & Karim, Rezaul & Verhasselt, Anneleen, 2021. "Semiparametric quantile regression using family of quantile-based asymmetric densities," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Wiktor Budziński & Danny Campbell & Mikołaj Czajkowski & Urška Demšar & Nick Hanley, 2018. "Using Geographically Weighted Choice Models to Account for the Spatial Heterogeneity of Preferences," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 606-626, September.
    10. Lei Hou & Wei Long & Qi Li, 2019. "Comovement of Home Prices: A Conditional Copula Approach," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 297-318, May.
    11. Djogbenou, Antoine & Inan, Emre & Jasiak, Joann, 2023. "Time-varying coefficient DAR model and stability measures for stablecoin prices: An application to Tether," Journal of International Money and Finance, Elsevier, vol. 139(C).
    12. Zhao, Xiao Bing & Zhou, Xian & Wang, Jing Long, 2009. "Semiparametric model for prediction of individual claim loss reserving," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 1-8, August.
    13. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    14. Teuber, T. & Lang, A., 2012. "A new similarity measure for nonlocal filtering in the presence of multiplicative noise," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3821-3842.
    15. Hans R. A. Koster & Jos van Ommeren, 2019. "Place-Based Policies and the Housing Market," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 400-414, July.
    16. Bach, Philipp & Farbmacher, Helmut & Spindler, Martin, 2018. "Semiparametric count data modeling with an application to health service demand," Econometrics and Statistics, Elsevier, vol. 8(C), pages 125-140.
    17. Jean‐Pierre Stockis & Jürgen Franke & Joseph Tadjuidje Kamgaing, 2010. "On geometric ergodicity of CHARME models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 141-152, May.
    18. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    19. Daniel Kosiorowski, 2015. "Two procedures for robust monitoring of probability distributions of economic data stream induced by depth functions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(1), pages 55-79.
    20. Peixin Zhao & Liugen Xue, 2013. "Instrumental variable-based empirical likelihood inferences for varying-coefficient models with error-prone covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 380-396, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:23:y:2011:i:2:p:287-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.