IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v31y2010i3p141-152.html
   My bibliography  Save this article

On geometric ergodicity of CHARME models

Author

Listed:
  • Jean‐Pierre Stockis
  • Jürgen Franke
  • Joseph Tadjuidje Kamgaing

Abstract

In this article we consider a CHARME model, a class of generalized mixture of nonlinear nonparametric AR‐ARCH time series. To provide sets of conditions under which such processes are geometrically ergodic and, therefore, satisfy some mixing conditions, we apply the theory of Markov chains to derive asymptotic stability of this model. These results form the basis for deriving an asymptotic theory for nonparametric estimation. As an illustration, neural network sieve estimates for the autoregressive and volatility functions are considered, and consistency of the parameter estimates is obtained.

Suggested Citation

  • Jean‐Pierre Stockis & Jürgen Franke & Joseph Tadjuidje Kamgaing, 2010. "On geometric ergodicity of CHARME models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 141-152, May.
  • Handle: RePEc:bla:jtsera:v:31:y:2010:i:3:p:141-152
    DOI: 10.1111/j.1467-9892.2010.00651.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2010.00651.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2010.00651.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian Francq & Michel Roussignol & Jean‐Michel Zakoian, 2001. "Conditional Heteroskedasticity Driven by Hidden Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 197-220, March.
    2. Jean Diebolt & Dominique Guegan, 1993. "Tail Behaviour of the Stationary Density of General Non-Linear Autoregressive Processes of Order One," Post-Print halshs-00199526, HAL.
    3. Stockis, Jean-Pierre & Tadjuidje-Kamgaing, Joseph & Franke, Jürgen, 2008. "A note on the identifiability of the conditional expectation for the mixtures of neural networks," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 739-742, April.
    4. Franke, Jurgen & Neumann, Michael H. & Stockis, Jean-Pierre, 2004. "Bootstrapping nonparametric estimators of the volatility function," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 189-218.
    5. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(2), pages 258-289, February.
    6. Bhattacharya, Rabi & Lee, Chanho, 1995. "On geometric ergodicity of nonlinear autoregressive models," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 311-315, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Fiecas & Jürgen Franke & Rainer von Sachs & Joseph Tadjuidje Kamgaing, 2017. "Shrinkage Estimation for Multivariate Hidden Markov Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 424-435, January.
    2. Rydlewski, Jerzy P. & Snarska, Małgorzata, 2014. "On geometric ergodicity of skewed—SVCHARME models," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 192-197.
    3. J. Franke & J.-P. Stockis & J. Tadjuidje-Kamgaing & W. Li, 2011. "Mixtures of nonparametric autoregressions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 287-303.
    4. Arash Nademi & Rahman Farnoosh, 2014. "Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 275-293, February.
    5. Daniel Kosiorowski, 2015. "Two procedures for robust monitoring of probability distributions of economic data stream induced by depth functions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(1), pages 55-79.
    6. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    2. Lu, Zudi & Jiang, Zhenyu, 2001. "L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 121-130, January.
    3. Joseph Tadjuidje Kamgaing & Hernando Ombao & Richard A. Davis, 2009. "Autoregressive processes with data‐driven regime switching," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(5), pages 505-533, September.
    4. Heidari , Hassan & Refah-Kahriz, Arash & Hashemi Berenjabadi, Nayyer, 2018. "Dynamic Relationship between Macroeconomic Variables and Stock Return Volatility in Tehran Stock Exchange: Multivariate MS ARMA GARCH Approach," Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, vol. 5(2), pages 223-250, August.
    5. J. Franke & J.-P. Stockis & J. Tadjuidje-Kamgaing & W. Li, 2011. "Mixtures of nonparametric autoregressions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 287-303.
    6. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    7. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    8. Liebscher, Eckhard, 2003. "Strong convergence of estimators in nonlinear autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 247-261, February.
    9. Karlsen, Hans Arnfinn & Tjostheim, Dag, 1998. "Nonparametric estimation in null recurrent times series," SFB 373 Discussion Papers 1998,50, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    10. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    11. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Estimation of Generalized Impulse Response Functions," Econometric Society World Congress 2000 Contributed Papers 1417, Econometric Society.
    12. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    13. Fakoor, V., 2010. "Strong uniform consistency of kernel density estimators under a censored dependent model," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 318-323, March.
    14. Francq, Christian & Zakoian, Jean-Michel, 2014. "Estimating multivariate GARCH and stochastic correlation models equation by equation," MPRA Paper 54250, University Library of Munich, Germany.
    15. Li, Shu & Ernest, Jan & Bühlmann, Peter, 2017. "Nonparametric causal inference from observational time series through marginal integration," Econometrics and Statistics, Elsevier, vol. 2(C), pages 81-105.
    16. Rydlewski, Jerzy P. & Snarska, Małgorzata, 2014. "On geometric ergodicity of skewed—SVCHARME models," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 192-197.
    17. Jia Chen & Jiti Gao & Degui Li, 2013. "Estimation in Single-Index Panel Data Models with Heterogeneous Link Functions," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 928-955, November.
    18. Holger Dette & Juan Carlos Pardo‐Fernández & Ingrid Van Keilegom, 2009. "Goodness‐of‐Fit Tests for Multiplicative Models with Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 782-799, December.
    19. repec:bgu:wpaper:0605 is not listed on IDEAS
    20. Jürgen Franke & Peter Mwita & Weining Wang, 2015. "Nonparametric estimates for conditional quantiles of time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 107-130, January.
    21. Krämer, Walter, 2008. "Long memory with Markov-Switching GARCH," Economics Letters, Elsevier, vol. 99(2), pages 390-392, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:31:y:2010:i:3:p:141-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.