IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v28y2009i1-3p170-185.html
   My bibliography  Save this article

Pairwise Likelihood Inference for General State Space Models

Author

Listed:
  • Cristiano Varin
  • Paolo Vidoni

Abstract

This article concerns parameter estimation for general state space models, following a frequentist likelihood-based approach. Since exact methods for computing and maximizing the likelihood function are usually not feasible, approximate solutions, based on Monte Carlo or numerical methods, have to be considered. Here, we concentrate on a different approach based on a simple pseudolikelihood, called “pairwise likelihood.” Its merit is to reduce the computational burden so that it is possible to fit highly structured statistical models, even when the use of standard likelihood methods is not possible. We discuss pairwise likelihood inference for state space models, and we present some touchstone examples concerning autoregressive models with additive observation noise and switching regimes, the local level model and a non-Makovian generalization of the dynamic Tobit model.

Suggested Citation

  • Cristiano Varin & Paolo Vidoni, 2009. "Pairwise Likelihood Inference for General State Space Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 170-185.
  • Handle: RePEc:taf:emetrv:v:28:y:2009:i:1-3:p:170-185
    DOI: 10.1080/07474930802388009
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930802388009
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474930802388009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    2. Paolo Vidoni, 2021. "Boosting multiplicative model combination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 761-789, September.
    3. Chakour, Vincent & Eluru, Naveen, 2016. "Examining the influence of stop level infrastructure and built environment on bus ridership in Montreal," Journal of Transport Geography, Elsevier, vol. 51(C), pages 205-217.
    4. Paolo Vidoni, 2018. "A note on predictive densities based on composite likelihood methods," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 31-48, April.
    5. T.-F. Lo & P.-H. Ke & W.-J. Tsay, 2018. "Pairwise likelihood inference for the random effects probit model," Computational Statistics, Springer, vol. 33(2), pages 837-861, June.
    6. Bianconcini, Silvia & Cagnone, Silvia, 2023. "The dimension-wise quadrature estimation of dynamic latent variable models for count data," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    7. Ipek Sener & Chandra Bhat, 2012. "Flexible spatial dependence structures for unordered multinomial choice models: formulation and application to teenagers’ activity participation," Transportation, Springer, vol. 39(3), pages 657-683, May.
    8. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    9. Nazneen Ferdous & Chandra Bhat, 2013. "A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns," Journal of Geographical Systems, Springer, vol. 15(1), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    3. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    4. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    5. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    6. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    7. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    8. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    9. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    10. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    11. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    12. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    13. Oreste Napolitano & Alberto Montagnoli, 2010. "The European Unemployment Gap and the Role of Monetary Policy," Economics Bulletin, AccessEcon, vol. 30(2), pages 1346-1358.
    14. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    15. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    16. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    17. Omar H. M. N. Bashar, 2015. "The Trickle‐down Effect of the Mining Boom in Australia: Fact or Myth?," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 94-108, June.
    18. Funke, Michael & Tsang, Andrew, 2019. "The direction and intensity of China's monetary policy conduct: A dynamic factor modelling approach," BOFIT Discussion Papers 8/2019, Bank of Finland Institute for Emerging Economies (BOFIT).
    19. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    20. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:28:y:2009:i:1-3:p:170-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.