IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i2p333-350.html
   My bibliography  Save this article

HydroGen: an Artificial Water Distribution Network Generator

Author

Listed:
  • Annelies De Corte
  • Kenneth Sörensen

Abstract

Many (metaheuristic) techniques for water distribution network (WDN) design optimisation already have been developed. Despite of the aforementioned scientific attention, only few, high-quality benchmark networks are available for algorithm testing, which, in turn, hinders profound algorithm testing, sensitivity analysis and comparison of the developed techniques. This absence of high-quality benchmark networks motivated us to develop a tool to algorithmically generate close-to-reality virtual WDNs. The tool, called HydroGen, can generate WDNs of arbitrary size and varying characteristics in EPANET or GraphML format. The generated WDNs are compared to (and shown to closely resemble) real WDNs in an analysis based on graph-theoretical indices. HydroGen is used to generate an extensive library of realistic test networks on which (metaheuristic) methods for the optimisation of WDN design can be tested, allowing researchers in this area to run sensitivity analyses and to draw conclusions on the robustness and performance of their methods. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Annelies De Corte & Kenneth Sörensen, 2014. "HydroGen: an Artificial Water Distribution Network Generator," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 333-350, January.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:2:p:333-350
    DOI: 10.1007/s11269-013-0485-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0485-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0485-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Reca & J. Martínez & C. Gil & R. Baños, 2008. "Application of Several Meta-Heuristic Techniques to the Optimization of Real Looped Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1367-1379, October.
    2. Calvin Siew & Tiku Tanyimboh, 2012. "Penalty-Free Feasibility Boundary Convergent Multi-Objective Evolutionary Algorithm for the Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4485-4507, December.
    3. da Conceicao Cunha, Maria & Ribeiro, Luisa, 2004. "Tabu search algorithms for water network optimization," European Journal of Operational Research, Elsevier, vol. 157(3), pages 746-758, September.
    4. Bong Jung & Yves Filion & Barry Adams & Bryan Karney, 2013. "Multi-Objective Design Optimization of Branched Pipeline Systems with Analytical Assessment of Fire Flow Failure Probability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3663-3678, August.
    5. J. Buhl & J. Gautrais & N. Reeves & R. V. Solé & S. Valverde & P. Kuntz & G. Theraulaz, 2006. "Topological patterns in street networks of self-organized urban settlements," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(4), pages 513-522, February.
    6. De Corte, Annelies & Sörensen, Kenneth, 2013. "Optimisation of gravity-fed water distribution network design: A critical review," European Journal of Operational Research, Elsevier, vol. 228(1), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    2. Luis Henrique Magalhães Costa & Gustavo Paiva Weyne Rodrigues, 2021. "Automatic Generation of Water Distribution Networks from Streets Layout," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1299-1319, March.
    3. DE CORTE, Annelies & SÖRENSEN, Kenneth, 2015. "A lean optimization algorithm for water distribution network design optimization," Working Papers 2015020, University of Antwerp, Faculty of Business and Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DE CORTE, Annelies & SÖRENSEN, Kenneth, 2015. "A lean optimization algorithm for water distribution network design optimization," Working Papers 2015020, University of Antwerp, Faculty of Business and Economics.
    2. M. Pasha & Kevin Lansey, 2014. "Strategies to Develop Warm Solutions for Real-Time Pump Scheduling for Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3975-3987, September.
    3. DE CORTE, Annelies & SÖRENSEN, Kenneth, 2012. "Optimisation of water distribution network design: a critical review," Working Papers 2012016, University of Antwerp, Faculty of Business and Economics.
    4. Pérez-Sánchez, Modesto & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Ramos, Helena M., 2018. "PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool," Renewable Energy, Elsevier, vol. 116(PA), pages 234-249.
    5. Hossein Fallah & Ozgur Kisi & Sungwon Kim & Mohammad Rezaie-Balf, 2019. "A New Optimization Approach for the Least-Cost Design of Water Distribution Networks: Improved Crow Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3595-3613, August.
    6. DE CORTE, Annelies & SÖRENSEN, Kenneth, 2014. "An iterated local search algorithm for water distribution network design optimisation," Working Papers 2014018, University of Antwerp, Faculty of Business and Economics.
    7. De Corte, Annelies & Sörensen, Kenneth, 2013. "Optimisation of gravity-fed water distribution network design: A critical review," European Journal of Operational Research, Elsevier, vol. 228(1), pages 1-10.
    8. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    9. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    10. Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    11. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    12. Milan Cisty, 2010. "Hybrid Genetic Algorithm and Linear Programming Method for Least-Cost Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 1-24, January.
    13. João Marques & Maria Cunha & Dragan Savić & Orazio Giustolisi, 2017. "Water Network Design Using a Multiobjective Real Options Framework," Journal of Optimization, Hindawi, vol. 2017, pages 1-13, January.
    14. Heng Ye & Zhiping Li & Guangyue Li & Yiran Liu, 2022. "Topology Analysis of Natural Gas Pipeline Networks Based on Complex Network Theory," Energies, MDPI, vol. 15(11), pages 1-20, May.
    15. Róbert Pethes & Levente Kovács, 2023. "An Exact and an Approximation Method to Compute the Degree Distribution of Inhomogeneous Random Graph Using Poisson Binomial Distribution," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    16. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    17. Fernández García, I. & Creaco, E. & Rodríguez Díaz, J.A. & Montesinos, P. & Camacho Poyato, E. & Savic, D., 2016. "Rehabilitating pressurized irrigation networks for an increased energy efficiency," Agricultural Water Management, Elsevier, vol. 164(P2), pages 212-222.
    18. J. Yazdi, 2016. "Decomposition based Multi Objective Evolutionary Algorithms for Design of Large-Scale Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2749-2766, June.
    19. Nikhil Hooda & Om Damani, 2019. "JalTantra: A System for the Design and Optimization of Rural Piped Water Networks," Service Science, INFORMS, vol. 49(6), pages 447-458, November.
    20. Salah Saleh & Tiku Tanyimboh, 2014. "Optimal Design of Water Distribution Systems Based on Entropy and Topology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3555-3575, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:2:p:333-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.