IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i5d10.1007_s11269-023-03484-2.html
   My bibliography  Save this article

Efficient Monitoring of Total Suspended Matter in Urban Water Based on UAV Multi-spectral Images

Author

Listed:
  • Yi Tang

    (Suzhou University of Science and Technology)

  • Yang Pan

    (Suzhou University of Science and Technology)

  • Lei Zhang

    (Suzhou University of Science and Technology)

  • Hongchen Yi

    (Suzhou University of Science and Technology)

  • Yiping Gu

    (Suzhou University of Science and Technology)

  • Weihao Sun

    (Suzhou University of Science and Technology)

Abstract

Water is not only an indispensable part of the natural environment but also an important component and basic guarantee of the urban ecological environment. Total Suspended Matter (TSM) is an important parameter to measure urban water quality. Therefore, it is essential to carry out real-time and efficient monitoring of the total suspended matter of urban water bodies to ensure water quality safety of urban water bodies. In this paper, the inversion model of TSM concentration of urban water is constructed using Unmanned Aerial Vehicle (UAV) multi-spectral images and measured TSM concentration data. The results show that: (1) The NIR band of the UAV image is highly sensitive to TSM concentration. (2) When the sample size is small, it is found that the TSM regression model is more stable and explanatory than the machine learning model. (3) The overall water quality of urban water bodies is poor, especially in areas with intense human activities such as shipping and construction. The TSM concentration in the river reaches is high, and the TSM concentration in the wider river reaches is higher than that in the narrow river channels and Landscape Lakes, and the TSM concentration remains stable in a certain length of river reaches. It can lay a foundation for further realizing real-time and efficient water quality parameter inversion in the future, and also provide an important scientific reference value for other water quality parameter inversion research, and provide theoretical basis and technical support for the scientific management of water ecological environment in urban water bodies.

Suggested Citation

  • Yi Tang & Yang Pan & Lei Zhang & Hongchen Yi & Yiping Gu & Weihao Sun, 2023. "Efficient Monitoring of Total Suspended Matter in Urban Water Based on UAV Multi-spectral Images," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2143-2160, March.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:5:d:10.1007_s11269-023-03484-2
    DOI: 10.1007/s11269-023-03484-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03484-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03484-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Xia & Yong-Yong Zhang & Chesheng Zhan & Ai Zhong Ye, 2011. "Water Quality Management in China: The Case of the Huai River Basin," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 27(1), pages 167-180, March.
    2. McKenzie, Jordi, 2011. "Mean absolute percentage error and bias in economic forecasting," Economics Letters, Elsevier, vol. 113(3), pages 259-262.
    3. Mohamad Fulazzaky, 2009. "Water Quality Evaluation System to Assess the Brantas River Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3019-3033, November.
    4. Fei Guo & Jingjia Zhang & A-xing Zhu & Zhuo Zhang & Hong Zhang, 2021. "An Assimilation Simulation Approach for the Suspended Sediment Concentration in Inland Lakes Using a Hybrid Perturbation Generation Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 2007-2022, April.
    5. Laís Coelho Teixeira & Priscila Pacheco Mariani & Olavo Correa Pedrollo & Nilza Maria Castro & Vanessa Sari, 2020. "Artificial Neural Network and Fuzzy Inference System Models for Forecasting Suspended Sediment and Turbidity in Basins at Different Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3709-3723, September.
    6. Romero-Trigueros, Cristina & Nortes, Pedro A. & Alarcón, Juan J. & Hunink, Johannes E. & Parra, Margarita & Contreras, Sergio & Droogers, Peter & Nicolás, Emilio, 2017. "Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing," Agricultural Water Management, Elsevier, vol. 183(C), pages 60-69.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Bagus Setiabudi Wiwoho & Ike Sari Astuti & Purwanto Purwanto & Ifan Deffinika & Imam Abdul Gani Alfarizi & Hetty Rahmawati Sucahyo & Randhiki Gusti & Mochammad Tri Herwanto & Gilang Aulia Herlambang, 2023. "Assessing long-term rainfall trends and changes in a tropical watershed Brantas, Indonesia: an approach for quantifying the agreement among satellite-based rainfall data, ground rainfall data, and sma," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2835-2862, July.
    3. Nawab Khan & Ram L. Ray & Ghulam Raza Sargani & Muhammad Ihtisham & Muhammad Khayyam & Sohaib Ismail, 2021. "Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture," Sustainability, MDPI, vol. 13(9), pages 1-31, April.
    4. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    5. Bastida, F. & Torres, I.F. & Abadía, J. & Romero-Trigueros, C. & Ruiz-Navarro, A. & Alarcón, J.J. & García, C. & Nicolás, E., 2018. "Comparing the impacts of drip irrigation by freshwater and reclaimed wastewater on the soil microbial community of two citrus species," Agricultural Water Management, Elsevier, vol. 203(C), pages 53-62.
    6. Ike Sari Astuti & Kamalakanta Sahoo & Adam Milewski & Deepak R. Mishra, 2019. "Impact of Land Use Land Cover (LULC) Change on Surface Runoff in an Increasingly Urbanized Tropical Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4087-4103, September.
    7. Yumin Wang & Weijian Ran & Lei Wu & Yifeng Wu, 2019. "Assessment of River Water Quality Based on an Improved Fuzzy Matter-Element Model," IJERPH, MDPI, vol. 16(15), pages 1-11, August.
    8. Seyed Masoud Soleimanpour & Hamid Gholami & Omid Rahmati & Samad Shadfar, 2023. "Fingerprinting Sources of Fine-grained Sediment Deposited in a Riverine System by GLUE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 899-913, January.
    9. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
    10. Wenju Zhao & Fangfang Ma & Haiying Yu & Zhaozhao Li, 2023. "Inversion Model of Salt Content in Alfalfa-Covered Soil Based on a Combination of UAV Spectral and Texture Information," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
    11. Roestamy, Martin & Martin, Abraham Yazdi & Rusli, Radif Khotamir & Fulazzaky, Mohamad Ali, 2022. "A review of the reliability of land bank institution in Indonesia for effective land management of public interest," Land Use Policy, Elsevier, vol. 120(C).
    12. Sandra Ricart & Rubén A. Villar-Navascués & Maria Hernández-Hernández & Antonio M. Rico-Amorós & Jorge Olcina-Cantos & Enrique Moltó-Mantero, 2021. "Extending Natural Limits to Address Water Scarcity? The Role of Non-Conventional Water Fluxes in Climate Change Adaptation Capacity: A Review," Sustainability, MDPI, vol. 13(5), pages 1-31, February.
    13. Jinze Song & Yuhao Li & Shuai Liu & Youming Xiong & Weixin Pang & Yufa He & Yaxi Mu, 2022. "Comparison of Machine Learning Algorithms for Sand Production Prediction: An Example for a Gas-Hydrate-Bearing Sand Case," Energies, MDPI, vol. 15(18), pages 1-32, September.
    14. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    15. García, Ana Belén Mira & Romero-Trigueros, Cristina & Gambín, José María Bayona & Sánchez Iglesias, Ma del Puerto & Tortosa, Pedro Antonio Nortes & Nicolás, Emilio Nicolás, 2023. "Estimation of stomatal conductance by infra-red thermometry in citrus trees cultivated under regulated deficit irrigation and reclaimed water," Agricultural Water Management, Elsevier, vol. 276(C).
    16. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    17. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    18. Zhang, X. & Chen, M.Y. & Wang, M.G. & Ge, Y.E. & Stanley, H.E., 2019. "A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 499-516.
    19. Diankai Wang & Inna Gryshova & Mykola Kyzym & Tetiana Salashenko & Viktoriia Khaustova & Maryna Shcherbata, 2022. "Electricity Price Instability over Time: Time Series Analysis and Forecasting," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    20. Martin Roestamy & Mohamad Ali Fulazzaky, 2022. "A review of the water resources management for the Brantas River basin: challenges in the transition to an integrated water resources management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11514-11529, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:5:d:10.1007_s11269-023-03484-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.