IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421002511.html
   My bibliography  Save this article

Changes in soil salinity under treated wastewater irrigation: A meta-analysis

Author

Listed:
  • Gao, Yang
  • Shao, Guangcheng
  • Wu, Shiqing
  • Xiaojun, Wang
  • Lu, Jia
  • Cui, Jintao

Abstract

In view of water shortages, the development and utilization of unconventional water resources have been studied extensively. Treated domestic or industrial wastewater used for agricultural irrigation is an unconventional water resource utilization method. Due to the particularities of water sources, previous studies have mainly focused on changes in soil heavy metals, microorganisms, and organic substances and crop responses to toxic elements; thus, attention to soil salinity is of secondary importance. After selecting qualifying research, a meta-analysis was performed to statistically analyze the data of seven variables (potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), electrical conductivity (EC), pH, and yield) to 1) estimate the mean effects of treated wastewater (TWW) irrigation on the soil salinity, soil pH and crop yield; and 2) identify the wastewater treatment grade (primary treated wastewater (PTW), secondary treated wastewater (STW), and tertiary treated wastewater (TTW)) and soil texture (sandy texture, loamy texture and clayey texture) that benefit TWW irrigation. The results showed that TWW irrigation caused a significant accumulation of soil salinity, and the increase in cation content from high to low was K (90.1%), Na (59.9%), Mg (25.2%) and Ca (17.3%). EC also increased significantly by approximately 57.2%, while there was no significant change in pH, and even the crop yield presented an average reduction of nearly 6.5%. PTW contributed to the largest salt accumulation, followed by TTW and STW. STW showed a significant increase in EC but did not show a significant change for the four ions. In terms of yield, STW can increase yield, while TTW has the opposite effect. In general, the sandier the soil texture, the higher is the salt content detected, although the retention of salt in loamy textured soil may differ depending on the ions. The yield of crops grown increased in the clayey textured soil and decreased in the loamy textured soil. Our study elucidated the response of soil salinity accumulation under TWW irrigation and could provide a reference for unconventional water resource utilization.

Suggested Citation

  • Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002511
    DOI: 10.1016/j.agwat.2021.106986
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.
    2. Drechsel, Pay & Scott, C. A. & Raschid-Sally, Liqa & Redwood, M. & Bahri, Akissa, 2010. "Wastewater irrigation and health: assessing and mitigating risk in low-income countries," IWMI Books, Reports H042600, International Water Management Institute.
    3. Pereira, B.F.F. & He, Z.L. & Stoffella, P.J. & Melfi, A.J., 2011. "Reclaimed wastewater: Effects on citrus nutrition," Agricultural Water Management, Elsevier, vol. 98(12), pages 1828-1833, October.
    4. Drechsel, Pay & Scott, C. A. & Raschid-Sally, Liqa & Redwood, M. & Bahri, Akissa, 2010. "Wastewater irrigation and health: assessing and mitigating risk in low-income countries," IWMI Books, Reports H042759, International Water Management Institute.
    5. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    6. Petousi, I. & Fountoulakis, M.S. & Saru, M.L. & Nikolaidis, N. & Fletcher, L. & Stentiford, E.I. & Manios, T., 2015. "Effects of reclaimed wastewater irrigation on olive (Olea europaea L. cv. ‘Koroneiki’) trees," Agricultural Water Management, Elsevier, vol. 160(C), pages 33-40.
    7. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    8. Hirzel, David R. & Steenwerth, Kerri & Parikh, Sanjai J. & Oberholster, Anita, 2017. "Impact of winery wastewater irrigation on soil, grape and wine composition," Agricultural Water Management, Elsevier, vol. 180(PA), pages 178-189.
    9. Wang, Zhiyu & Shao, Guangcheng & Lu, Jia & Zhang, Kun & Gao, Yang & Ding, Jihui, 2020. "Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Drechsel, Pay & Scott, Christopher A. & Raschid-Sally, Liqa & Redwood, Mark & Bahri, Akissa (ed.), 2010. "Wastewater irrigation and health: assessing and mitigating risk in low-income countries," IWMI Books, International Water Management Institute, number 137591.
    11. Nicolás, E. & Alarcón, JJ & Mounzer, O. & Pedrero, F. & Nortes, PA & Alcobendas, R. & Romero-Trigueros, C. & Bayona, JM & Maestre-Valero, JF, 2016. "Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water," Agricultural Water Management, Elsevier, vol. 166(C), pages 1-8.
    12. Muyen, Zahida & Moore, Graham A. & Wrigley, Roger J., 2011. "Soil salinity and sodicity effects of wastewater irrigation in South East Australia," Agricultural Water Management, Elsevier, vol. 99(1), pages 33-41.
    13. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    14. Zhang, Ying & Li, Xin & Wang, Zhigang & Liang, Haijing & Hu, Miao & Meng, Qingjuan, 2012. "Study on the response of soil chemical properties and corn (Zea mays L.) to the land application with sugar beet rinse water," Agricultural Water Management, Elsevier, vol. 115(C), pages 38-46.
    15. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    16. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
    17. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Bedbabis, Saida & Trigui, Dhouha & Ben Ahmed, Chedlia & Clodoveo, Maria Lisa & Camposeo, Salvatore & Vivaldi, Gaetano Alessandro & Ben Rouina, Béchir, 2015. "Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality," Agricultural Water Management, Elsevier, vol. 160(C), pages 14-21.
    19. Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.
    20. Pedrero, Francisco & Allende, Ana & Gil, María I. & Alarcón, Juan J., 2012. "Soil chemical properties, leaf mineral status and crop production in a lemon tree orchard irrigated with two types of wastewater," Agricultural Water Management, Elsevier, vol. 109(C), pages 54-60.
    21. Bourazanis, G. & Roussos, P.A. & Argyrokastritis, I. & Kosmas, C. & Kerkides, P., 2016. "Evaluation of the use of treated municipal waste water on the yield, oil quality, free fatty acids’ profile and nutrient levels in olive trees cv Koroneiki, in Greece," Agricultural Water Management, Elsevier, vol. 163(C), pages 1-8.
    22. Bastida, F. & Torres, I.F. & Abadía, J. & Romero-Trigueros, C. & Ruiz-Navarro, A. & Alarcón, J.J. & García, C. & Nicolás, E., 2018. "Comparing the impacts of drip irrigation by freshwater and reclaimed wastewater on the soil microbial community of two citrus species," Agricultural Water Management, Elsevier, vol. 203(C), pages 53-62.
    23. Raveh, Eran & Ben-Gal, Alon, 2016. "Irrigation with water containing salts: Evidence from a macro-data national case study in Israel," Agricultural Water Management, Elsevier, vol. 170(C), pages 176-179.
    24. María Fernanda Jaramillo & Inés Restrepo, 2017. "Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    25. Pedrero, Francisco & Camposeo, Salvatore & Pace, Bernardo & Cefola, Maria & Vivaldi, Gaetano Alessandro, 2018. "Use of reclaimed wastewater on fruit quality of nectarine in Southern Italy," Agricultural Water Management, Elsevier, vol. 203(C), pages 186-192.
    26. Romero-Trigueros, Cristina & Nortes, Pedro A. & Alarcón, Juan J. & Hunink, Johannes E. & Parra, Margarita & Contreras, Sergio & Droogers, Peter & Nicolás, Emilio, 2017. "Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing," Agricultural Water Management, Elsevier, vol. 183(C), pages 60-69.
    27. Tunc, Talip & Sahin, Ustun, 2015. "The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters," Agricultural Water Management, Elsevier, vol. 158(C), pages 213-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanna Dragonetti & Roula Khadra, 2023. "Assessing Soil Dynamics and Improving Long-Standing Irrigation Management with Treated Wastewater: A Case Study on Citrus Trees in Palestine," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    2. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Shanbao Liu & Qiuying Zhang & Zhao Li & Chao Tian & Yunfeng Qiao & Kun Du & Hefa Cheng & Gang Chen & Xiaoyan Li & Fadong Li, 2023. "Soil Salinity Weakening and Soil Quality Enhancement after Long-Term Reclamation of Different Croplands in the Yellow River Delta," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    4. Wang, Lin & Blanchy, Guillaume & Cornelis, Wim & Garré, Sarah, 2024. "Changes in soil hydraulic and physio-chemical properties under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 295(C).
    5. Sinda Bekir & Rahma Inès Zoghlami & Khaoula Boudabbous & Mohamed Naceur Khelil & Mohammed Moussa & Rim Ghrib & Oumaima Nahdi & Emna Trabelsi & Habib Bousnina, 2022. "Soil Physicochemical Changes as Modulated by Treated Wastewater after Medium-and Long-Term Irrigations: A Case Study from Tunisia," Agriculture, MDPI, vol. 12(12), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.
    3. Shannag, Hail K. & Al-Mefleh, Naji K. & Freihat, Nawaf M., 2021. "Reuse of wastewaters in irrigation of broad bean and their effect on plant-aphid interaction," Agricultural Water Management, Elsevier, vol. 257(C).
    4. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    5. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    6. Sana Khalid & Muhammad Shahid & Natasha & Irshad Bibi & Tania Sarwar & Ali Haidar Shah & Nabeel Khan Niazi, 2018. "A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries," IJERPH, MDPI, vol. 15(5), pages 1-36, May.
    7. Ben Hassena, Ameni & Zouari, Mohamed & Trabelsi, Lina & Khabou, Wahid & Zouari, Nacim, 2018. "Physiological improvements of young olive tree (Olea europaea L. cv. Chetoui) under short term irrigation with treated wastewater," Agricultural Water Management, Elsevier, vol. 207(C), pages 53-58.
    8. Chojnacka, K. & Witek-Krowiak, A. & Moustakas, K. & Skrzypczak, D. & Mikula, K. & Loizidou, M., 2020. "A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Bastida, F. & Torres, I.F. & Abadía, J. & Romero-Trigueros, C. & Ruiz-Navarro, A. & Alarcón, J.J. & García, C. & Nicolás, E., 2018. "Comparing the impacts of drip irrigation by freshwater and reclaimed wastewater on the soil microbial community of two citrus species," Agricultural Water Management, Elsevier, vol. 203(C), pages 53-62.
    10. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    11. Perulli, Giulio Demetrio & Bresilla, Kushtrim & Manfrini, Luigi & Boini, Alexandra & Sorrenti, Giovambattista & Grappadelli, Luca Corelli & Morandi, Brunella, 2019. "Beneficial effect of secondary treated wastewater irrigation on nectarine tree physiology," Agricultural Water Management, Elsevier, vol. 221(C), pages 120-130.
    12. Musazura, W. & Odindo, A.O. & Tesfamariam, E.H. & Hughes, J.C. & Buckley, C.A., 2019. "Nitrogen and phosphorus dynamics in plants and soil fertigated with decentralised wastewater treatment effluent," Agricultural Water Management, Elsevier, vol. 215(C), pages 55-62.
    13. Maaß, Oliver & Grundmann, Philipp, 2016. "Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany)," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 195-211.
    14. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    15. Demetrio Antonio Zema & Bruno Gianmarco Carrà & Agostino Sorgonà & Antonino Zumbo & Manuel Esteban Lucas-Borja & Isabel Miralles & Raúl Ortega & Rocío Soria & Santo Marcello Zimbone & Paolo Salvatore , 2023. "Sustainable Use of Treated Municipal Wastewater after Chlorination: Short-Term Effects on Crops and Soils," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    16. Anane, Makram & Bouziri, Lamia & Limam, Atef & Jellali, Salah, 2012. "Ranking suitable sites for irrigation with reclaimed water in the Nabeul-Hammamet region (Tunisia) using GIS and AHP-multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 36-46.
    17. Mark Redwood & Moez Bouraoui & Boubaker Houmane, 2014. "Rainwater and greywater harvesting for urban food security in La Soukra, Tunisia," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 30(2), pages 293-307, June.
    18. Maestre-Valero, J.F. & Gonzalez-Ortega, M.J. & Martinez-Alvarez, V. & Gallego-Elvira, B. & Conesa-Jodar, F.J. & Martin-Gorriz, B., 2019. "Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain," Agricultural Water Management, Elsevier, vol. 218(C), pages 174-181.
    19. Drechsel, Pay & Qadir, M. & Galibourg, D., 2022. "The WHO guidelines for safe wastewater use in agriculture: a review of implementation challenges and possible solutions in the global south," Papers published in Journals (Open Access), International Water Management Institute, pages 1-14(6):864.
    20. Desta Woldetsadik & Pay Drechsel & Bernard Keraita & Fisseha Itanna & Heluf Gebrekidan, 2018. "Farmers’ perceptions on irrigation water contamination, health risks and risk management measures in prominent wastewater-irrigated vegetable farming sites of Addis Ababa, Ethiopia," Environment Systems and Decisions, Springer, vol. 38(1), pages 52-64, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.