IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4883-d544137.html
   My bibliography  Save this article

Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture

Author

Listed:
  • Nawab Khan

    (College of Management, Sichuan Agricultural University, Chengdu 611100, China)

  • Ram L. Ray

    (College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX 77446, USA)

  • Ghulam Raza Sargani

    (College of Economics, Sichuan Agricultural University, Chengdu 611100, China)

  • Muhammad Ihtisham

    (College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
    College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China)

  • Muhammad Khayyam

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Sohaib Ismail

    (Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China)

Abstract

The agricultural industry is getting more data-centric and requires precise, more advanced data and technologies than before, despite being familiar with agricultural processes. The agriculture industry is being advanced by various information and advanced communication technologies, such as the Internet of Things (IoT). The rapid emergence of these advanced technologies has restructured almost all other industries, as well as advanced agriculture, which has shifted the industry from a statistical approach to a quantitative one. This radical change has shaken existing farming techniques and produced the latest prospects in a series of challenges. This comprehensive review article enlightens the potential of the IoT in the advancement of agriculture and the challenges faced when combining these advanced technologies with conventional agricultural systems. A brief analysis of these advanced technologies with sensors is presented in advanced agricultural applications. Numerous sensors that can be implemented for specific agricultural practices require best management practices (e.g., land preparation, irrigation systems, insect, and disease management). This review includes the integration of all suitable techniques, from sowing to harvesting, packaging, transportation, and advanced technologies available for farmers throughout the cropping system. Besides, this review article highlights the utilization of other tools such as unmanned aerial vehicles (UAVs) for crop monitoring and other beneficiary measures, such as optimizing crop yields. In addition, advanced programs based on the IoT are also discussed. Finally, based on our comprehensive review, we identified advanced prospects regarding the IoT, which are essential tools for sustainable agriculture.

Suggested Citation

  • Nawab Khan & Ram L. Ray & Ghulam Raza Sargani & Muhammad Ihtisham & Muhammad Khayyam & Sohaib Ismail, 2021. "Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture," Sustainability, MDPI, vol. 13(9), pages 1-31, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4883-:d:544137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    2. Jaafar, Hadi H. & Woertz, Eckart, 2016. "Agriculture as a funding source of ISIS: A GIS and remote sensing analysis," Food Policy, Elsevier, vol. 64(C), pages 14-25.
    3. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    4. Ganjar Alfian & Muhammad Syafrudin & Jongtae Rhee, 2017. "Real-Time Monitoring System Using Smartphone-Based Sensors and NoSQL Database for Perishable Supply Chain," Sustainability, MDPI, vol. 9(11), pages 1-17, November.
    5. Susan Wyche & Charles Steinfield, 2016. "Why Don't Farmers Use Cell Phones to Access Market Prices? Technology Affordances and Barriers to Market Information Services Adoption in Rural Kenya," Information Technology for Development, Taylor & Francis Journals, vol. 22(2), pages 320-333, April.
    6. Sinn, Hans-Werner, 2012. "The Green Paradox: A Supply-Side Approach to Global Warming," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262016680, April.
    7. Mark, Tyler & Griffin, Terry, 2016. "Defining the Barriers to Telematics for Precision Agriculture: Connectivity Supply and Demand," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230090, Southern Agricultural Economics Association.
    8. David Pimentel & Michael Burgess, 2013. "Soil Erosion Threatens Food Production," Agriculture, MDPI, vol. 3(3), pages 1-21, August.
    9. Felix Wortmann & Kristina Flüchter, 2015. "Internet of Things," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 57(3), pages 221-224, June.
    10. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    11. Muhammad Ihtisham & Shiliang Liu & Muhammad Owais Shahid & Nawab Khan & Bingyang Lv & Mohammad Sarraf & Siyad Ali & Longqing Chen & Yinggao Liu & Qibing Chen, 2020. "The Optimized N, P, and K Fertilization for Bermudagrass Integrated Turf Performance during the Establishment and Its Importance for the Sustainable Management of Urban Green Spaces," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    12. Jorge Torres-Sánchez & Francisca López-Granados & Nicolás Serrano & Octavio Arquero & José M Peña, 2015. "High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
    13. J. R. Minkoua Nzie & J. C. Bidogeza & Nkwah Azinwi Ngum, 2018. "Mobile Phone Use, Transaction Costs, and Price: Evidence from Rural Vegetable Farmers in Cameroon," Journal of African Business, Taylor & Francis Journals, vol. 19(3), pages 323-342, July.
    14. Romero-Trigueros, Cristina & Nortes, Pedro A. & Alarcón, Juan J. & Hunink, Johannes E. & Parra, Margarita & Contreras, Sergio & Droogers, Peter & Nicolás, Emilio, 2017. "Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing," Agricultural Water Management, Elsevier, vol. 183(C), pages 60-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puppala, Harish & Peddinti, Pranav R.T. & Tamvada, Jagannadha Pawan & Ahuja, Jaya & Kim, Byungmin, 2023. "Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India," Technology in Society, Elsevier, vol. 74(C).
    2. Lee, Jaebeom & Kim, Jongyun, 2024. "Modification of Hilhorst model for saturated extract electrical conductivity estimation of coir using frequency domain reflectometry sensors – A laboratory study," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Dorijan Radočaj & Ante Šiljeg & Rajko Marinović & Mladen Jurišić, 2023. "State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    4. Nicholas M. Short & M. Jennifer Woodward-Greene & Michael D. Buser & Daniel P. Roberts, 2023. "Scalable Knowledge Management to Meet Global 21st Century Challenges in Agriculture," Land, MDPI, vol. 12(3), pages 1-19, February.
    5. Nawab Khan & Ram L. Ray & Hazem S. Kassem & Muhammad Ihtisham & Badar Naseem Siddiqui & Shemei Zhang, 2022. "Can Cooperative Supports and Adoption of Improved Technologies Help Increase Agricultural Income? Evidence from a Recent Study," Land, MDPI, vol. 11(3), pages 1-18, March.
    6. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdoulghafor & Samir Brahim Belhaouari & Normahira Mamat & Shamsul Faisal Mohd Hussein, 2022. "Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review," Agriculture, MDPI, vol. 12(7), pages 1-35, July.
    7. Yeboah, Samuel, 2023. "Unlocking the Potential of Technological Innovations for Sustainable Agriculture in Developing Countries: Enhancing Resource Efficiency and Environmental Sustainability," MPRA Paper 118215, University Library of Munich, Germany, revised 26 Jul 2023.
    8. Ha, Le Thanh, 2023. "An investigation of digital integration's importance on smart and sustainable agriculture in the European region," Resources Policy, Elsevier, vol. 86(PA).
    9. Yeboah, Samuel, 2023. "Unlocking the Potential of Technological Innovations for Sustainable Agriculture in Developing Countries: Enhancing Resource Efficiency and Environmental Sustainability," MPRA Paper 118216, University Library of Munich, Germany, revised 04 Aug 2023.
    10. Lisandra Rocha-Meneses & Mario Luna-delRisco & Carlos Arrieta González & Sebastián Villegas Moncada & Andrés Moreno & Jorge Sierra-Del Rio & Luis E. Castillo-Meza, 2023. "An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia," Energies, MDPI, vol. 16(16), pages 1-20, August.
    11. Mirela Stoian & Raluca Andreea Ion & Vlad Constantin Turcea & Ionut Catalin Nica & Catalin Gheorghe Zemeleaga, 2022. "The Influence of Governmental Agricultural R&D Expenditure on Farmers’ Income—Disparities between EU Member States," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    12. Yi Cheng, 2023. "Analysis of Development Strategy for Ecological Agriculture Based on a Neural Network in the Environmental Economy," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    13. Shemei Zhang & Jiliang Ma & Liu Zhang & Zhanli Sun & Zhijun Zhao & Nawab Khan, 2022. "Does Adoption of Honeybee Pollination Promote the Economic Value of Kiwifruit Farmers? Evidence from China," IJERPH, MDPI, vol. 19(14), pages 1-14, July.
    14. Khan, Nawab & Ray, Ram L. & Zhang, Shemei & Osabuohien, Evans & Ihtisham, Muhammad, 2022. "Influence of mobile phone and internet technology on income of rural farmers: Evidence from Khyber Pakhtunkhwa Province, Pakistan," Technology in Society, Elsevier, vol. 68(C).
    15. Nawab Khan & Ram L. Ray & Hazem S. Kassem & Farhat Ullah Khan & Muhammad Ihtisham & Shemei Zhang, 2022. "Does the Adoption of Mobile Internet Technology Promote Wheat Productivity? Evidence from Rural Farmers," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    16. Jiliang Ma & Jiajia Qu & Nawab Khan & Huijie Zhang, 2022. "Towards Sustainable Agricultural Development for Edible Beans in China: Evidence from 848 Households," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    17. Nawab Khan & Ram L. Ray & Hazem S. Kassem & Sajjad Hussain & Shemei Zhang & Muhammad Khayyam & Muhammad Ihtisham & Simplice A. Asongu, 2021. "Potential Role of Technology Innovation in Transformation of Sustainable Food Systems: A Review," Agriculture, MDPI, vol. 11(10), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balderrama Prieto, Silvino A. & Sabharwall, Piyush, 2024. "Technical and economic evaluation of heat transfer fluids for a TES system integrated to an advanced nuclear reactor," Applied Energy, Elsevier, vol. 360(C).
    2. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    3. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    4. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Joseph Ikechukwu Uduji & Elda Nduka Okolo-Obasi & Simplice Anutechia Asongu, 2021. "Does growth enhancement support scheme (GESS) contribute to youth development in informal farm entrepreneurship? Evidence from rural communities in Nigeria," Journal of Enterprising Communities: People and Places in the Global Economy, Emerald Group Publishing Limited, vol. 15(3), pages 451-476, February.
    6. Simplice A. Asongu & Stella-Maris I. Orim & Rexon T. Nting, 2019. "Terrorism and Social Media: Global Evidence," Journal of Global Information Technology Management, Taylor & Francis Journals, vol. 22(3), pages 208-228, July.
    7. Simplice A. Asongu & Jacinta C. Nwachukwu & Stella-Maris I. Orim & Chris Pyke, 2019. "Crime and Social Media," Research Africa Network Working Papers 19/003, Research Africa Network (RAN).
    8. Gershom Endelani Mwalupaso & Shangao Wang & Sanzidur Rahman & Essiagnon John-Philippe Alavo & Xu Tian, 2019. "Agricultural Informatization and Technical Efficiency in Maize Production in Zambia," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    9. Muthumanickam Dhanaraju & Poongodi Chenniappan & Kumaraperumal Ramalingam & Sellaperumal Pazhanivelan & Ragunath Kaliaperumal, 2022. "Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture," Agriculture, MDPI, vol. 12(10), pages 1-26, October.
    10. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    11. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    12. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    13. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    14. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    15. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    16. Kashif Zia & Muhammad Shafi & Umar Farooq, 2020. "Improving Recommendation Accuracy Using Social Network of Owners in Social Internet of Vehicles," Future Internet, MDPI, vol. 12(4), pages 1-15, April.
    17. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.
    18. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    19. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    20. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4883-:d:544137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.