IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i12d10.1007_s11269-019-02370-0.html
   My bibliography  Save this article

Uncertainty Analysis of Climate Change Impact on River Flow Extremes Based on a Large Multi-Model Ensemble

Author

Listed:
  • Jan Niel

    (KU Leuven)

  • E. Uytven

    (KU Leuven)

  • P. Willems

    (KU Leuven)

Abstract

Water managers are faced with a changing climate in the decision-making process while adaptation and mitigation strategies need to be developed. The climate change impact towards the end of the century, however, is highly uncertain and coping with this is a great challenge for decision makers. Over the recent years, combined efforts of hydrologists and climatologists have led to many climate change impact studies on water resources. However, most studies only use a limited ensemble size and/or focus on only one contributing source and hence possibly underestimate the total uncertainty. For two Belgian catchments, we simulated daily flow with five different lumped conceptual hydrological models and ten different parameter sets each, forced by the output of 24 global climate models covering four different emission scenarios, combined with 9 different downscaling methods over reference (1961–1990) and future (2071–2100) periods, resulting in a large multi-model ensemble with 41,850 members. Results show that both low and peak flows would become more extreme in the future, and these changes are stronger with increased radiative forcing. The most important uncertainty sources in low-flow projections are the global climate models (explaining 27–36% of the total variance) and the hydrological model structure (34–42%). For peak flow projections, these are global climate models (32–39%) and statistical downscaling methods (21–26%). Also, interaction effects account for a significant part of the uncertainty (24–38%). The results of this study illustrate that one might end up with biased results and overly confident conclusions when only focusing on some of the uncertainty sources in multi-model ensembles.

Suggested Citation

  • Jan Niel & E. Uytven & P. Willems, 2019. "Uncertainty Analysis of Climate Change Impact on River Flow Extremes Based on a Large Multi-Model Ensemble," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4319-4333, September.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:12:d:10.1007_s11269-019-02370-0
    DOI: 10.1007/s11269-019-02370-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02370-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02370-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsen Tavakoli & Florimond De Smedt & Thomas Vansteenkiste & Patrick Willems, 2014. "Impact of climate change and urban development on extreme flows in the Grote Nete watershed, Belgium," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2127-2142, April.
    2. Brij Kishor Pandey & Deepak Khare & Akiyuki Kawasaki & Prabhash K. Mishra, 2019. "Climate Change Impact Assessment on Blue and Green Water by Coupling of Representative CMIP5 Climate Models with Physical Based Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 141-158, January.
    3. Simon N. Gosling & Jamal Zaherpour & Nick J. Mount & Fred F. Hattermann & Rutger Dankers & Berit Arheimer & Lutz Breuer & Jie Ding & Ingjerd Haddeland & Rohini Kumar & Dipangkar Kundu & Junguo Liu & A, 2017. "Erratum to: A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C," Climatic Change, Springer, vol. 141(3), pages 597-598, April.
    4. P. C. D. Milly & K. A. Dunne, 2016. "Potential evapotranspiration and continental drying," Nature Climate Change, Nature, vol. 6(10), pages 946-949, October.
    5. A. D. Teklesadik & T. Alemayehu & A. van Griensven & R. Kumar & S. Liersch & S. Eisner & J. Tecklenburg & S. Ewunte & X. Wang, 2017. "Inter-model comparison of hydrological impacts of climate change on the Upper Blue Nile basin using ensemble of hydrological models and global climate models," Climatic Change, Springer, vol. 141(3), pages 517-532, April.
    6. Chong-yu Xu, 1999. "Climate Change and Hydrologic Models: A Review of Existing Gaps and Recent Research Developments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(5), pages 369-382, October.
    7. A. Chamorro & P. Kraft & G. Pauer & J.-F. Exbrayat & L. Breuer, 2017. "Effect of (quasi-)optimum model parameter sets and model characteristics on future discharge projection of two basins from Europe and Asia," Climatic Change, Springer, vol. 142(3), pages 559-573, June.
    8. Simon N. Gosling & Jamal Zaherpour & Nick J. Mount & Fred F. Hattermann & Rutger Dankers & Berit Arheimer & Lutz Breuer & Jie Ding & Ingjerd Haddeland & Rohini Kumar & Dipangkar Kundu & Junguo Liu & A, 2017. "A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C," Climatic Change, Springer, vol. 141(3), pages 577-595, April.
    9. Roja Najafi & Masoud Reza Hessami Kermani, 2017. "Uncertainty Modeling of Statistical Downscaling to Assess Climate Change Impacts on Temperature and Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1843-1858, April.
    10. Jew Das & Alin Treesa & N. V. Umamahesh, 2018. "Modelling Impacts of Climate Change on a River Basin: Analysis of Uncertainty Using REA & Possibilistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4833-4852, December.
    11. Saeed Ghavidelfar & Sayed Alvankar & Arash Razmkhah, 2011. "Comparison of the Lumped and Quasi-distributed Clark Runoff Models in Simulating Flood Hydrographs on a Semi-arid Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1775-1790, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadi Galavi & Majid Mirzaei, 2020. "Analyzing Uncertainty Drivers of Climate Change Impact Studies in Tropical and Arid Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2097-2109, April.
    2. E. Pastén-Zapata & T. Eberhart & K. H. Jensen & J. C. Refsgaard & T. O. Sonnenborg, 2022. "Towards a More Robust Evaluation of Climate Model and Hydrological Impact Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3545-3560, August.
    3. Mahdi Valikhan Anaraki & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2021. "Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 199-223, January.
    4. Vasileios Kitsikoudis & Bernhard P. J. Becker & Ymkje Huismans & Pierre Archambeau & Sébastien Erpicum & Michel Pirotton & Benjamin Dewals, 2020. "Discrepancies in Flood Modelling Approaches in Transboundary River Systems: Legacy of the Past or Well-grounded Choices?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3465-3478, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Krysanova & Jamal Zaherpour & Iulii Didovets & Simon N. Gosling & Dieter Gerten & Naota Hanasaki & Hannes Müller Schmied & Yadu Pokhrel & Yusuke Satoh & Qiuhong Tang & Yoshihide Wada, 2020. "How evaluation of global hydrological models can help to improve credibility of river discharge projections under climate change," Climatic Change, Springer, vol. 163(3), pages 1353-1377, December.
    2. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Alexander Kaune & Patricia López & Anouk Gevaert & Ted Veldkamp & Micha Werner & Charlotte Fraiture, 2020. "The Benefit of Using an Ensemble of Global Hydrological Models in Surface Water Availability for Irrigation Area Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2221-2240, May.
    4. Kyla M. Dahlin & Donald Akanga & Danica L. Lombardozzi & David E. Reed & Gabriela Shirkey & Cheyenne Lei & Michael Abraha & Jiquan Chen, 2020. "Challenging a Global Land Surface Model in a Local Socio-Environmental System," Land, MDPI, vol. 9(10), pages 1-21, October.
    5. Anne Gädeke & Valentina Krysanova & Aashutosh Aryal & Jinfeng Chang & Manolis Grillakis & Naota Hanasaki & Aristeidis Koutroulis & Yadu Pokhrel & Yusuke Satoh & Sibyll Schaphoff & Hannes Müller Schmie, 2020. "Performance evaluation of global hydrological models in six large Pan-Arctic watersheds," Climatic Change, Springer, vol. 163(3), pages 1329-1351, December.
    6. Shanshan Wen & Buda Su & Yanjun Wang & Jianqing Zhai & Hemin Sun & Ziyan Chen & Jinlong Huang & Anqian Wang & Tong Jiang, 2020. "Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China," Climatic Change, Springer, vol. 163(3), pages 1207-1226, December.
    7. Shaochun Huang & Harsh Shah & Bibi S. Naz & Narayan Shrestha & Vimal Mishra & Prasad Daggupati & Uttam Ghimire & Tobias Vetter, 2020. "Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins," Climatic Change, Springer, vol. 163(3), pages 1143-1164, December.
    8. Hamid Nouri & Farnoush Ghasempour, 2019. "An Experimental Test for Application of Analytical Model of Surge Flow under Drought and Wet Conditions in a Semi-Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1969-1983, April.
    9. Hadi Galavi & Majid Mirzaei, 2020. "Analyzing Uncertainty Drivers of Climate Change Impact Studies in Tropical and Arid Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2097-2109, April.
    10. Zhansheng Li & Xiaolin Guo & Yuan Yang & Yang Hong & Zhongjing Wang & Liangzhi You, 2019. "Heatwave Trends and the Population Exposure Over China in the 21st Century as Well as Under 1.5 °C and 2.0 °C Global Warmer Future Scenarios," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    11. Manohar Arora & Pratap Singh & N. Goel & R. Singh, 2008. "Climate Variability Influences on Hydrological Responses of a Large Himalayan Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1461-1475, October.
    12. Jew Das & Alin Treesa & N. V. Umamahesh, 2018. "Modelling Impacts of Climate Change on a River Basin: Analysis of Uncertainty Using REA & Possibilistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4833-4852, December.
    13. Muhammad Azmat & Muhammad Uzair Qamar & Shakil Ahmed & Muhammad Adnan Shahid & Ejaz Hussain & Sajjad Ahmad & Rao Arsalan Khushnood, 2018. "Ensembling Downscaling Techniques and Multiple GCMs to Improve Climate Change Predictions in Cryosphere Scarcely-Gauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3155-3174, July.
    14. Ali Suliman & Milad Jajarmizadeh & Sobri Harun & Intan Mat Darus, 2015. "Comparison of Semi-Distributed, GIS-Based Hydrological Models for the Prediction of Streamflow in a Large Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3095-3110, July.
    15. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Thanh Le & Deg-Hyo Bae, 2013. "Evaluating the Utility of IPCC AR4 GCMs for Hydrological Application in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3227-3246, July.
    17. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    18. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    19. Lucas Eduardo Oliveira Aparecido & Kamila Cunha Meneses & Pedro Antonio Lorençone & João Antonio Lorençone & Jose Reinaldo da Silva Cabral de Moraes & Glauco Souza Rolim, 2023. "Climate classification by Thornthwaite (1948) humidity index in future scenarios for Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 855-878, January.
    20. Siabi, E. K. & Phuong, D. N. D. & Kabobah, A. T. & Akpoti, Komlavi & Anornu, G. & Incoom, A. B. M. & Nyantakyi, E. K. & Yeboah, K. A. & Siabi, S. E. & Vuu, C. & Domfeh, M. K. & Mortey, E. M. & Wemegah, 2023. "Projections and impact assessment of the local climate change conditions of the Black Volta Basin of Ghana based on the Statistical DownScaling Model," Papers published in Journals (Open Access), International Water Management Institute, pages 14(2):494-5.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:12:d:10.1007_s11269-019-02370-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.