Predicting Monthly Runoff of the Upper Yangtze River Based on Multiple Machine Learning Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
- Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
- Erdem, Orhan & Ceyhan, Elvan & Varli, Yusuf, 2014.
"A new correlation coefficient for bivariate time-series data,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 274-284.
- Orhan Erdem & Elvan Ceyhan & Yusuf Varlı, 2011. "A New Correlation Coefficient for Bivariate Time-Series Data," Working Papers 201101, Murat Sertel Center for Advanced Economic Studies, Istanbul Bilgi University.
- Fangqin Zhang & Yan Kang & Xiao Cheng & Peiru Chen & Songbai Song, 2022. "A Hybrid Model Integrating Elman Neural Network with Variational Mode Decomposition and Box–Cox Transformation for Monthly Runoff Time Series Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3673-3697, August.
- Peiman Parisouj & Hamid Mohebzadeh & Taesam Lee, 2020. "Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4113-4131, October.
- A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
- Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
- Icen Yoosefdoost & Abbas Khashei-Siuki & Hossein Tabari & Omolbani Mohammadrezapour, 2022. "Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1191-1215, March.
- A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.
- Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
- Alagidede, Paul & Panagiotidis, Theodore, 2009.
"Modelling stock returns in Africa's emerging equity markets,"
International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
- Paul Alagidede & Theodore Panagiotidis, 2009. "Modelling stock returns in Africa’s emerging equity markets," Discussion Paper Series 2009_01, Department of Economics, University of Macedonia, revised Jan 2009.
- Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," Stirling Economics Discussion Papers 2009-04, University of Stirling, Division of Economics.
- Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
- Chen, Shyh-Wei & Xie, Zixiong, 2015. "Testing for current account sustainability under assumptions of smooth break and nonlinearity," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 142-156.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- de Lima, Pedro J. F., 1997. "On the robustness of nonlinearity tests to moment condition failure," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 251-280.
- Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005.
"Mean and variance causality between the Cyprus Stock Exchange and major equity markets,"
Working Papers
0501, University of Crete, Department of Economics.
- Georgios Kouretas & Eleni Constantinou & Robert Georgiades & Avo Kazandjian, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Money Macro and Finance (MMF) Research Group Conference 2005 24, Money Macro and Finance Research Group.
- Tor Jacobson & Per Jansson & Anders Vredin & Anders Warne, 2001. "Monetary policy analysis and inflation targeting in a small open economy: a VAR approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 487-520.
- Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Tor Jacobson & Johan Lyhagen & Rolf Larsson & Marianne Nessén, 2008.
"Inflation, exchange rates and PPP in a multivariate panel cointegration model,"
Econometrics Journal, Royal Economic Society, vol. 11(1), pages 58-79, March.
- Jacobson, Tor & Lyhagen, Johan & Larsson, Rolf & Nessén, Marianne, 2002. "Inflation, Exchange Rates and PPP in a Multivariate Panel Cointegration Model," Working Paper Series 145, Sveriges Riksbank (Central Bank of Sweden).
- Tor Jacobson & Johan Lyhagen & Rolf Larsson & Marianne Nessén, 2002. "Inflation, Exchange Rates and PPP in a Multivariate Panel Cointegration Model," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 D4-2, International Conferences on Panel Data.
- Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
- Baur, Dirk & Jung, Robert C., 2006. "Return and volatility linkages between the US and the German stock market," Journal of International Money and Finance, Elsevier, vol. 25(4), pages 598-613, June.
- Theodore Panagiotidis, 2010.
"Market efficiency and the Euro: the case of the Athens stock exchange,"
Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 37(3), pages 237-251, July.
- Theodore Panagiotidis, 2003. "Market Efficiency and the Euro:The case of the Athens Stock Exchange," Public Policy Discussion Papers 03-08, Economics and Finance Section, School of Social Sciences, Brunel University.
- Theodore Panagiotidis, 2005. "Market Efficiency and the Euro: The case of the Athens Stock Exchange," Finance 0507022, University Library of Munich, Germany.
- Theodore Panagiotidis, 2003. "Market Efficiency and the Euro:The case of the Athens Stock Exchange," Economics and Finance Discussion Papers 03-08, Economics and Finance Section, School of Social Sciences, Brunel University.
- Theodore Panagiotidis, 2008. "Market Efficiency and the Euro: The case of the Athens Stock exchange," Discussion Paper Series 2008_14, Department of Economics, University of Macedonia, revised Dec 2008.
- Wang, Jianzhou & Lv, Mengzheng & Wang, Shuai & Gao, Jialu & Zhao, Yang & Wang, Qiangqiang, 2024. "Can multi-period auto-portfolio systems improve returns? Evidence from Chinese and U.S. stock markets," International Review of Financial Analysis, Elsevier, vol. 95(PB).
- Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
- Theodore Panagiotidis & Afroditi Triampella, 2006.
"Central Bank Independence and inflation: the case of Greece,"
Revista de Economía del Rosario, Universidad del Rosario, June.
- Theodore Panagiotidis & Afrodit Triampella, 2005. "Central Bank Independence and Inflation: The case of Greece," Discussion Paper Series 2005_7, Department of Economics, Loughborough University, revised Jul 2005.
- Zacharias Psaradakis & Marián Vávra, 2019.
"Portmanteau tests for linearity of stationary time series,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
- Marian Vavra, 2012. "Testing Non-linearity Using a Modified Q Test," Birkbeck Working Papers in Economics and Finance 1204, Birkbeck, Department of Economics, Mathematics & Statistics.
- Zacharias Psaradakis & Marian Vavra, 2016. "Portmanteau Tests for Linearity of Stationary Time Series," Working and Discussion Papers WP 1/2016, Research Department, National Bank of Slovakia.
- Zacharias Psaradakis & Marián Vávra, 2015. "Portmanteau Tests for Linearity of Stationary Time Series," Birkbeck Working Papers in Economics and Finance 1514, Birkbeck, Department of Economics, Mathematics & Statistics.
- Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020.
"Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model,"
Energy Economics, Elsevier, vol. 88(C).
- Aviral Kumar Tiwari & Goodness C. Aye & Rangan Gupta & Konstantinos Gkillas, 2019. "Gold-Oil Dependence Dynamics and the Role of Geopolitical Risks: Evidence from a Markov-Switching Time-Varying Copula Model," Working Papers 201918, University of Pretoria, Department of Economics.
- Dalla, Violetta & Giraitis, Liudas & Phillips, Peter C. B., 2022.
"Robust Tests For White Noise And Cross-Correlation,"
Econometric Theory, Cambridge University Press, vol. 38(5), pages 913-941, October.
- Violetta Dalla & Liudas Giraitis & Peter C.B. Phillips, 2019. "Robust Tests for White Noise and Cross-Correlation," Cowles Foundation Discussion Papers 2194, Cowles Foundation for Research in Economics, Yale University, revised Mar 2020.
- Violetta Dalla & Liudas Giraitis & Peter C. B. Phillips, 2020. "Robust Tests for White Noise and Cross-Correlation," Working Papers 906, Queen Mary University of London, School of Economics and Finance.
- Violetta Dalla & Liudas Giraitis & Peter C.B. Phillips, 2019. "Robust Tests for White Noise and Cross-Correlation," Cowles Foundation Discussion Papers 2194, Cowles Foundation for Research in Economics, Yale University.
More about this item
Keywords
monthly runoff prediction; machine learning; copula entropy; stepwise regression; Upper Yangtze River;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11149-:d:908023. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.