IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i11d10.1007_s11269-020-02644-y.html
   My bibliography  Save this article

A Comparative Study of Linear Stochastic with Nonlinear Daily River Discharge Forecast Models

Author

Listed:
  • Hossein Bonakdari

    (Laval University)

  • Andrew D. Binns

    (University of Guelph)

  • Bahram Gharabaghi

    (University of Guelph)

Abstract

Accurate forecast of the magnitude and timing of the flood peak river discharge and the extent of inundated areas during major storm events are a vital component of early warning systems around the world that are responsible for saving countless lives every year. This study assesses the forecast accuracy of two different linear and non-linear approaches to predict the daily river discharge. A new linear stochastic method is produced by evaluating a detailed comparison between three pre-processing approaches, differencing, standardization, spectral analysis, and trend removal. Daily river discharge values of the Bow River with strong seasonal and non-seasonal correlations located in Alberta, Canada were utilized in this study. The stochastic term for this daily flow time series is calculated with an auto-regressive integrated moving average. We found that seasonal differencing is the best stationarization method for periodic effect elimination. Moreover, the proposed non-linear Group Method of Data Handling (GMDH) model could overcome the known accuracy limitations of the classical GMDH models that use only two inputs in each neuron from the adjacent layer. The proposed new non-linear GMDH-based method (named GS-GMDH) can improve the structure of the classical linear GMDH. The GS-GMDH model produced the most accurate forecasts in the Bow River case study with statistical indices such as the coefficient of determination and Nash-Sutcliffe for the daily discharge time series higher than 97% and relative error less than 6%. Finally, an explicit equation for estimation of the daily discharge of the Bow River is developed using the proposed GS-GMDH model to showcase the practical application of the new method in flood forecasting and management.

Suggested Citation

  • Hossein Bonakdari & Andrew D. Binns & Bahram Gharabaghi, 2020. "A Comparative Study of Linear Stochastic with Nonlinear Daily River Discharge Forecast Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3689-3708, September.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:11:d:10.1007_s11269-020-02644-y
    DOI: 10.1007/s11269-020-02644-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02644-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02644-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    2. Francesco Serinaldi & Florian Loecker & Chris G. Kilsby & Hubert Bast, 2018. "Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 71-92, October.
    3. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Jing & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "A Multi-imputation Method to Deal With Hydro-Meteorological Missing Values by Integrating Chain Equations and Random Forest," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1159-1173, March.
    2. Maha Shabbir & Sohail Chand & Farhat Iqbal, 2022. "A Novel Hybrid Method for River Discharge Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 253-272, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xiaoye, 2015. "Volatility transmission and volatility impulse response functions among the Greater China stock markets," Journal of Asian Economics, Elsevier, vol. 39(C), pages 43-58.
    2. Pao, Hsiao-Tien & Fu, Hsin-Chia, 2013. "The causal relationship between energy resources and economic growth in Brazil," Energy Policy, Elsevier, vol. 61(C), pages 793-801.
    3. Kyritsis, Evangelos & Serletis, Apostolos, 2018. "The zero lower bound and market spillovers: Evidence from the G7 and Norway," Research in International Business and Finance, Elsevier, vol. 44(C), pages 100-123.
    4. Yu-Chen Zhang & Deng-Kui Si & Bing Zhao, 2020. "The Convergence of Sulphur Dioxide (SO 2 ) Emissions Per Capita in China," Sustainability, MDPI, vol. 12(5), pages 1-33, February.
    5. Alizadeh, Amir H. & Tamvakis, Michael, 2016. "Market conditions, trader types and price–volume relation in energy futures markets," Energy Economics, Elsevier, vol. 56(C), pages 134-149.
    6. Saghaian, Sayed & Nemati, Mehdi & Walters, Cory & Chen, Bo, 2018. "Asymmetric Price Volatility Transmission between U.S. Biofuel, Corn, and Oil Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 43(1), January.
    7. Christopher Thiem, 2018. "Oil price uncertainty and the business cycle: Accounting for the influences of global supply and demand within a VAR GARCH-in-mean framework," Applied Economics, Taylor & Francis Journals, vol. 50(34-35), pages 3735-3751, July.
    8. Per Bjarte Solibakke, 2006. "Mean and Volatility Transmission in European Electrcity Markets. a Seminonparametric Approach," EcoMod2006 272100085, EcoMod.
    9. Dong, Xiyong & Li, Changhong & Yoon, Seong-Min, 2021. "How can investors build a better portfolio in small open economies? Evidence from Asia’s Four Little Dragons," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    10. Aharon, David Y. & Ali, Shoaib, 2024. "A high-frequency data dive into SVB collapse," Finance Research Letters, Elsevier, vol. 59(C).
    11. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    12. Xyngis, Georgios, 2017. "Business-cycle variation in macroeconomic uncertainty and the cross-section of expected returns: Evidence for scale-dependent risks," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 43-65.
    13. Kalaitzi, Athanasia Stylianou & Chamberlain, Trevor William, 2021. "The validity of the export-led growth hypothesis: some evidence from the GCC," LSE Research Online Documents on Economics 106586, London School of Economics and Political Science, LSE Library.
    14. Lee, Chien-Chiang & Zeng, Jhih-Hong, 2011. "Revisiting the relationship between spot and futures oil prices: Evidence from quantile cointegrating regression," Energy Economics, Elsevier, vol. 33(5), pages 924-935, September.
    15. Makram El-Shagi & Sebastian Giesen, 2013. "Testing for Structural Breaks at Unknown Time: A Steeplechase," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 101-123, January.
    16. Arago, Vicent & Nieto, Luisa, 2005. "Heteroskedasticity in the returns of the main world stock exchange indices: volume versus GARCH effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(3), pages 271-284, July.
    17. Pan, Lei & Matsuki, Takashi, 2021. "House price convergence in the very long run: new evidence from Fourier quantile unit root test," MPRA Paper 110816, University Library of Munich, Germany.
    18. Manolis G. Kavussanos & Ilias D. Visvikis, 2011. "The Predictability of Non-Overlapping Forecasts: Evidence from a New Market," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 125-156, March - J.
    19. Wang, Yizhi, 2022. "Volatility spillovers across NFTs news attention and financial markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
    20. Jinan Liu & Apostolos Serletis, 2023. "Volatility and dependence in energy markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(1), pages 15-37, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:11:d:10.1007_s11269-020-02644-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.