IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i1d10.1007_s11269-021-03002-2.html
   My bibliography  Save this article

Climate-driven Model Based on Long Short-Term Memory and Bayesian Optimization for Multi-day-ahead Daily Streamflow Forecasting

Author

Listed:
  • Yani Lian

    (Xi’an University of Technology)

  • Jungang Luo

    (Xi’an University of Technology)

  • Jingmin Wang

    (Project Construction Co. Ltd)

  • Ganggang Zuo

    (Xi’an University of Technology)

  • Na Wei

    (Xi’an University of Technology)

Abstract

Many previous studies have developed decomposition and ensemble models to improve runoff forecasting performance. However, these decomposition-based models usually introduce large decomposition errors into the modeling process. Since the variation in runoff time series is greatly driven by climate change, many previous studies considering climate change focused on only rainfall-runoff modeling, with few meteorological factors as input. Therefore, a climate-driven streamflow forecasting (CDSF) framework was proposed to improve the runoff forecasting accuracy. This framework is realized by using principal component analysis (PCA), long short-term memory (LSTM) and Bayesian optimization (BO), referred to as PCA-LSTM-BO. To validate the effectiveness and superiority of the PCA-LSTM-BO method along with one autoregressive LSTM model and two other CDSF models based on PCA, BO, and either support vector regression (SVR) or gradient boosting regression trees (GBRT), namely, PCA-SVR-BO and PCA-GBRT-BO, respectively, were compared. A generalization performance index based on the Nash-Sutcliffe efficiency (NSE), called the GI(NSE) value, is proposed to evaluate the generalizability of the model. The results show that (1) the proposed model is significantly better than the other benchmark models in terms of the mean square error (MSE =0.819, and GI(NSE)

Suggested Citation

  • Yani Lian & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "Climate-driven Model Based on Long Short-Term Memory and Bayesian Optimization for Multi-day-ahead Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 21-37, January.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:1:d:10.1007_s11269-021-03002-2
    DOI: 10.1007/s11269-021-03002-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-03002-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-03002-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yun Bai & Nejc Bezak & Klaudija Sapač & Mateja Klun & Jin Zhang, 2019. "Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4783-4797, November.
    2. Xinxin He & Jungang Luo & Ganggang Zuo & Jiancang Xie, 2019. "Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1571-1590, March.
    3. Hsi-Ting Fang & Bing-Chen Jhong & Yih-Chi Tan & Kai-Yuan Ke & Mo-Hsiung Chuang, 2019. "A Two-Stage Approach Integrating SOM- and MOGA-SVM-Based Algorithms to Forecast Spatial-temporal Groundwater Level with Meteorological Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 797-818, January.
    4. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maha Shabbir & Sohail Chand & Farhat Iqbal & Ozgur Kisi, 2024. "Hybrid Approach for Streamflow Prediction: LASSO-Hampel Filter Integration with Support Vector Machines, Artificial Neural Networks, and Autoregressive Distributed Lag Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4179-4196, September.
    2. Jun Li, 2024. "A Flood Season Division Model Considering Uncertainty and New Information Priority," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3755-3784, August.
    3. Yani Lian & Jungang Luo & Wei Xue & Ganggang Zuo & Shangyao Zhang, 2022. "Cause-driven Streamflow Forecasting Framework Based on Linear Correlation Reconstruction and Long Short-term Memory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1661-1678, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
    2. Fangqin Zhang & Yan Kang & Xiao Cheng & Peiru Chen & Songbai Song, 2022. "A Hybrid Model Integrating Elman Neural Network with Variational Mode Decomposition and Box–Cox Transformation for Monthly Runoff Time Series Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3673-3697, August.
    3. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    4. Cheng-Chia Huang, 2024. "Navigating Reservoir Deposition Challenges: Evaluation of Reservoir Desilting Strategy Through a 4-Stage Life Cycle Assessment Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3937-3952, August.
    5. Muhammad Ali Musarat & Wesam Salah Alaloul & Muhammad Babar Ali Rabbani & Mujahid Ali & Muhammad Altaf & Roman Fediuk & Nikolai Vatin & Sergey Klyuev & Hamna Bukhari & Alishba Sadiq & Waqas Rafiq & Wa, 2021. "Kabul River Flow Prediction Using Automated ARIMA Forecasting: A Machine Learning Approach," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    6. Pin-Chun Huang & Kuo-Lin Hsu & Kwan Tun Lee, 2021. "Improvement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1079-1100, February.
    7. Umar Muhammad Mustapha Kumshe & Zakariya Muhammad Abdulhamid & Baba Ahmad Mala & Tasiu Muazu & Abdullahi Uwaisu Muhammad & Ousmane Sangary & Abdoul Fatakhou Ba & Sani Tijjani & Jibril Muhammad Adam & , 2024. "Improving Short-term Daily Streamflow Forecasting Using an Autoencoder Based CNN-LSTM Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5973-5989, December.
    8. Elham Forootan, 2019. "Analysis of trends of hydrologic and climatic variables," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(3), pages 163-171.
    9. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    10. Ting Wei & Songbai Song, 2022. "Comparison of Frequency Calculation Methods for Precipitation Series Containing Zero Values," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 527-550, January.
    11. V. K. Prajapati & M. Khanna & M. Singh & R. Kaur & R. N. Sahoo & D. K. Singh, 2021. "Evaluation of time scale of meteorological, hydrological and agricultural drought indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 89-109, October.
    12. Junhao Wu & Zhaocai Wang & Yuan Hu & Sen Tao & Jinghan Dong, 2023. "Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 937-953, January.
    13. Qiao, Weibiao & Liu, Wei & Liu, Enbin, 2021. "A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of U.S," Energy, Elsevier, vol. 235(C).
    14. Huseyin Cagan Kilinc & Adem Yurtsever, 2022. "Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm for Hydrological Time Series," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    15. Anurag Malik & Anil Kumar & Rajesh P. Singh, 2019. "Application of Heuristic Approaches for Prediction of Hydrological Drought Using Multi-scalar Streamflow Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3985-4006, September.
    16. Roghayeh Ghasempour & Mohammad Taghi Aalami & Kiyoumars Roushangar, 2022. "Drought Vulnerability Assessment Based on a Multi-criteria Integrated Approach and Application of Satellite-based Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3839-3858, August.
    17. Okan Mert Katipoğlu, 2023. "Prediction of Streamflow Drought Index for Short-Term Hydrological Drought in the Semi-Arid Yesilirmak Basin Using Wavelet Transform and Artificial Intelligence Techniques," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    18. Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
    19. Yun Bai & Nejc Bezak & Bo Zeng & Chuan Li & Klaudija Sapač & Jin Zhang, 2021. "Daily Runoff Forecasting Using a Cascade Long Short-Term Memory Model that Considers Different Variables," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1167-1181, March.
    20. Temidayo Olowoyeye & Mariusz Ptak & Mariusz Sojka, 2023. "How Do Extreme Lake Water Temperatures in Poland Respond to Climate Change?," Resources, MDPI, vol. 12(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:1:d:10.1007_s11269-021-03002-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.