IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i5d10.1007_s11269-022-03097-1.html
   My bibliography  Save this article

Cause-driven Streamflow Forecasting Framework Based on Linear Correlation Reconstruction and Long Short-term Memory

Author

Listed:
  • Yani Lian

    (Xi’an University of Technology)

  • Jungang Luo

    (Xi’an University of Technology)

  • Wei Xue

    (Project Construction Co. Ltd)

  • Ganggang Zuo

    (Xi’an University of Technology)

  • Shangyao Zhang

    (Xi’an University of Technology)

Abstract

Reasonable runoff forecasting is the foundation of water resource management. However, the impact of environmental change on streamflow was not fully revealed due to the lack of enough streamflow features in many previous studies. In contrast, too many features also could lead cause undesired problems, including unstable model, interpretation difficulty, overfitting, high computational complexity, and high memory complexity. To address the above problems, this study proposes a cause-driven runoff forecasting framework based on linear-correlated reconstruction and machine learning model and refers to this framework as CSLM. We use variance inflation factor (VIF), pairwise linear correlation (PLC) reconstruction, and long short-term memory (LSTM) to realize this framework, referred to as VIF-PLC-LSTM. Four experiments were conducted to demonstrate the accuracy and efficiency of the proposed framework and its VIF-PLC-LSTM realization. Four experiments compare 1) different filter thresholds of driving factors, 2) different combination prediction features, 3) different reconstruction methods of linear-correlated features, and 4) different CSLM models. Experimental results on daily streamflow data from the Tangnaihai station at the Yellow River source and the Yangxian station at the Han River show that 1) data filtering has the risk of feature information loss, 2) when the streamflow, ERA5L, and meteorology data are used as inputs at the same time, the performance of the model is superior to the combination of other prediction features; the prediction effect of different prediction features, 3) the reconstruction of linear-correlated features is not only better than dimension reduction but also can improve the forecasting performance for streamflow prediction, and 4) among different CSLM models, LSTM is superior to other models.

Suggested Citation

  • Yani Lian & Jungang Luo & Wei Xue & Ganggang Zuo & Shangyao Zhang, 2022. "Cause-driven Streamflow Forecasting Framework Based on Linear Correlation Reconstruction and Long Short-term Memory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1661-1678, March.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:5:d:10.1007_s11269-022-03097-1
    DOI: 10.1007/s11269-022-03097-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03097-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03097-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinxin He & Jungang Luo & Peng Li & Ganggang Zuo & Jiancang Xie, 2020. "A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 865-884, January.
    2. Xinxin He & Jungang Luo & Ganggang Zuo & Jiancang Xie, 2019. "Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1571-1590, March.
    3. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    4. Yani Lian & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "Climate-driven Model Based on Long Short-Term Memory and Bayesian Optimization for Multi-day-ahead Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 21-37, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
    2. Hui Hu & Jianfeng Zhang & Tao Li, 2021. "A Novel Hybrid Decompose-Ensemble Strategy with a VMD-BPNN Approach for Daily Streamflow Estimating," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5119-5138, December.
    3. Zhennan Liu & Qiongfang Li & Jingnan Zhou & Weiguo Jiao & Xiaoyu Wang, 2021. "Runoff Prediction Using a Novel Hybrid ANFIS Model Based on Variable Screening," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2921-2940, July.
    4. Yuhan Zhang & Youqi Wang & Yiru Bai & Ruiyuan Zhang & Xu Liu & Xian Ma, 2023. "Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models," Land, MDPI, vol. 12(11), pages 1-15, October.
    5. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    6. Yani Lian & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "Climate-driven Model Based on Long Short-Term Memory and Bayesian Optimization for Multi-day-ahead Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 21-37, January.
    7. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    8. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    9. Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.
    10. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    11. Syed Muhammad Raza Abidi & Mushtaq Hussain & Yonglin Xu & Wu Zhang, 2018. "Prediction of Confusion Attempting Algebra Homework in an Intelligent Tutoring System through Machine Learning Techniques for Educational Sustainable Development," Sustainability, MDPI, vol. 11(1), pages 1-21, December.
    12. Yaquelin Verenice Pantoja-Pacheco & Armando Javier Ríos-Lira & José Antonio Vázquez-López & José Alfredo Jiménez-García & Martha Laura Asato-España & Moisés Tapia-Esquivias, 2021. "One Note for Fractionation and Increase for Mixed-Level Designs When the Levels Are Not Multiple," Mathematics, MDPI, vol. 9(13), pages 1-20, June.
    13. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    14. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    15. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.
    16. Lawal, Abiola S. & Servadio, Joseph L. & Davis, Tate & Ramaswami, Anu & Botchwey, Nisha & Russell, Armistead G., 2021. "Orthogonalization and machine learning methods for residential energy estimation with social and economic indicators," Applied Energy, Elsevier, vol. 283(C).
    17. Sojin Park & Nahyun Kwon & Yonghan Ahn, 2019. "Forecasting Repair Schedule for Building Components Based on Case-Based Reasoning and Fuzzy-AHP," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    18. Mushtaq Hussain Khan & Hina Yaqub Bhatti & Arshad Hassan & Ahmad Fraz, 2021. "The diversification–performance nexus: mediating role of information asymmetry," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 25(3), pages 787-810, September.
    19. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    20. Xie, Xiangmin & Chen, Daolian, 2022. "Data-driven dynamic harmonic model for modern household appliances," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:5:d:10.1007_s11269-022-03097-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.