IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i8d10.1007_s11269-021-02812-8.html
   My bibliography  Save this article

Influence of Inflow Nonstationarity on the Multipurpose Optimal Operation of Hydropower Plants Using Nonlinear Programming

Author

Listed:
  • Alan de Gois Barbosa

    (Federal University of Sergipe)

  • Alcigeimes B. Celeste

    (Federal University of Sergipe)

  • Ludmilson Abritta Mendes

    (Federal University of Sergipe)

Abstract

One of the greatest challenges in the electricity generation sector is to operate hydrothermal plants in view of the randomness of hydrological events and climate change, that may impact the inflows into the systems. In several Brazilian watersheds, conflicts among water users are already registered, in addition to inflow changes that affect the electricity generation system. The São Francisco River Basin (SFRB) is an important source of water for the development of northeastern Brazil. In this context, this work aimed at carrying out a study on the statistical behavior of time series related to the management of the SFRB hydrosystem network, as well as to measure the performance of hydropower plants in supplying multiple users, in different critical periods. Historical records of natural streamflow, natural inflow energy and stored energy were used. Some statisctical tests were applied to detect trends and change-points. The Natural Energy method was applied to different subsamples to define critical periods. Next, a deterministic nonlinear operation optimization model was used to assess the supply to the multiple users for the different critical periods. The main contribution of this study is the impact of nonstationarity in planning and operation of hydrosystems. The results indicated that the natural inflow energy and the stored energy time series are predominantly non-stationary, with a trend change in the 1990s, which modifies the critical period of the basin to 2013–2019, significantly increasing the vulnerability of the system in about 35% when compared to the currently used critical period (1949–1956).

Suggested Citation

  • Alan de Gois Barbosa & Alcigeimes B. Celeste & Ludmilson Abritta Mendes, 2021. "Influence of Inflow Nonstationarity on the Multipurpose Optimal Operation of Hydropower Plants Using Nonlinear Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2343-2367, June.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02812-8
    DOI: 10.1007/s11269-021-02812-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02812-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02812-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl & F. Hugo Lambert & Nathan P. Gillett & Susan Solomon & Peter A. Stott & Toru Nozawa, 2007. "Detection of human influence on twentieth-century precipitation trends," Nature, Nature, vol. 448(7152), pages 461-465, July.
    2. João Paulo Lyra Fialho Brêda & Rodrigo Cauduro Dias Paiva & Walter Collischon & Juan Martín Bravo & Vinicius Alencar Siqueira & Elisa Bolzan Steinke, 2020. "Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections," Climatic Change, Springer, vol. 159(4), pages 503-522, April.
    3. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    4. Asmadi Ahmad & Ahmed El-Shafie & Siti Razali & Zawawi Mohamad, 2014. "Reservoir Optimization in Water Resources: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3391-3405, September.
    5. Arvin Samadi-koucheksaraee & Iman Ahmadianfar & Omid Bozorg-Haddad & Seyed Amin Asghari-pari, 2019. "Gradient Evolution Optimization Algorithm to Optimize Reservoir Operation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 603-625, January.
    6. Marcelo Coelho & Cristovão Vicente Scapulatempo Fernandes & Daniel Henrique Marco Detzel, 2019. "Uncertainty analysis in the detection of trends, cycles, and shifts in water resources time series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2629-2644, June.
    7. Alcigeimes Celeste & Max Billib, 2010. "The Role of Spill and Evaporation in Reservoir Optimization Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 617-628, March.
    8. Iman Ahmadianfar & Omid Bozorg-Haddad & Xuefeng Chu, 2019. "Optimizing Multiple Linear Rules for Multi-Reservoir Hydropower Systems Using an Optimization Method with an Adaptation Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4265-4286, September.
    9. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vartika Paliwal & Aniruddha D. Ghare & Ashwini B. Mirajkar & Neeraj Dhanraj Bokde & Andrés Elías Feijóo Lorenzo, 2019. "Computer Modeling for the Operation Optimization of Mula Reservoir, Upper Godavari Basin, India, Using the Jaya Algorithm," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    2. Alcigeimes Celeste, 2015. "Reservoir Design Optimization Incorporating Performance Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4305-4318, September.
    3. Alcigeimes B. Celeste & Ahmed El-Shafie, 2018. "Assessment of Stochastic Operation Optimization for Reservoirs of Contrasting Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3751-3763, September.
    4. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    5. Fu, Yuanhong & Ding, Guijie & Quan, Wenxuan & Zhao, Xizhou & Tao, Qinghong, 2024. "Coupling optimization of water-fertilizer for coordinated development of the environment and growth of Pinus massoniana seedlings," Agricultural Water Management, Elsevier, vol. 300(C).
    6. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    7. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Thibaut Cuvelier & Pierre Archambeau & Benjamin Dewals & Quentin Louveaux, 2018. "Comparison Between Robust and Stochastic Optimisation for Long-term Reservoir Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1599-1614, March.
    9. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Asmadi Ahmad & Siti Fatin Mohd Razali & Zawawi Samba Mohamed & Ahmed El-shafie, 2016. "The Application of Artificial Bee Colony and Gravitational Search Algorithm in Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2497-2516, May.
    11. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    12. Kobra Rahmati & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2021. "Application of the Grasshopper Optimization Algorithm (GOA) to the Optimal Operation of Hydropower Reservoir Systems Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4325-4348, October.
    13. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    14. Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
    15. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    16. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    17. Gabriel Ménard, 2013. "Environmental non-governmental organizations: key players in development in a changing climate—a case study of Mali," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(1), pages 117-131, February.
    18. Muhammad Usman Rashid & Abid Latif & Muhammad Azmat, 2018. "Optimizing Irrigation Deficit of Multipurpose Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1675-1687, March.
    19. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    20. Hsin-Yu Chen & Yu-Hsiang Hsu & Chia-Chi Huang & Hsin-Fu Yeh, 2023. "Baseflow Variation in Southern Taiwan Basin," Sustainability, MDPI, vol. 15(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02812-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.