IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9574-d1513196.html
   My bibliography  Save this article

A Spatial Landslide Risk Assessment Based on Hazard, Vulnerability, Exposure, and Adaptive Capacity

Author

Listed:
  • Thong Xuan Tran

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    Faculty of Hydraulic Engineering, Hanoi University of Civil Engineering, Hanoi 11616, Vietnam)

  • Sihong Liu

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

  • Hang Ha

    (Department of Geodesy and Geomatic Engineering, Hanoi University of Civil Engineering, Hanoi 11616, Vietnam)

  • Quynh Duy Bui

    (Department of Geodesy and Geomatic Engineering, Hanoi University of Civil Engineering, Hanoi 11616, Vietnam)

  • Long Quoc Nguyen

    (Department of Mine Surveying, Hanoi University of Mining and Geology, Hanoi 11909, Vietnam)

  • Dinh Quoc Nguyen

    (Environmental Chemistry and Ecotoxicology Lab, Phenikaa University, Hanoi 12116, Vietnam)

  • Cong-Ty Trinh

    (Faculty of Hydraulic Engineering, Hanoi University of Civil Engineering, Hanoi 11616, Vietnam)

  • Chinh Luu

    (Faculty of Hydraulic Engineering, Hanoi University of Civil Engineering, Hanoi 11616, Vietnam)

Abstract

Landslides threaten human life, property, and vital infrastructure in most mountainous regions. As climate change intensifies extreme weather patterns, the landslide risk is likely to increase, resulting in challenges for disaster management, sustainability development, and community resilience. This study presents a comprehensive framework for assessing landslide risk, integrating advanced machine learning models with the Iyengar–Sudarshan method. Our case study is Son La province, the Northwest region of Vietnam, with data collected from 1771 historical landslide occurrences and fifteen influencing factors for developing landslide susceptibility maps using advanced ensemble machine learning models. The Iyengar–Sudarshan method was applied to determine the weights for landslide exposure, vulnerability, and adaptive capacity indicators. The resulting landslide risk map shows that the highest-risk districts in Son La province are located in the central and northeastern regions, including Mai Son, Phu Yen, Thuan Chau, Yen Chau, Song Ma, and Bac Yen. These districts experience high landslide hazards, exposure, and vulnerability, often affecting densely populated urban and village areas with vulnerable populations, such as young children, the elderly, and working-age women. In contrast, due to minimal exposure, Quynh Nhai and Muong La districts have lower landslide risks. Despite having high exposure and vulnerability, Son La City is situated in a low-susceptibility zone with high adaptive capacity, resulting in a low landslide risk for this region. The proposed framework provides a reference tool for mitigating risk and enhancing strategic decision making in areas susceptible to landslides while advancing our understanding of landslide dynamics and fostering community resilience and long-term disaster prevention.

Suggested Citation

  • Thong Xuan Tran & Sihong Liu & Hang Ha & Quynh Duy Bui & Long Quoc Nguyen & Dinh Quoc Nguyen & Cong-Ty Trinh & Chinh Luu, 2024. "A Spatial Landslide Risk Assessment Based on Hazard, Vulnerability, Exposure, and Adaptive Capacity," Sustainability, MDPI, vol. 16(21), pages 1-37, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9574-:d:1513196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. Pourghasemi & H. Moradi & S. Fatemi Aghda, 2013. "Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 749-779, October.
    2. S. Modugno & S. C. M. Johnson & P. Borrelli & E. Alam & N. Bezak & H. Balzter, 2022. "Analysis of human exposure to landslides with a GIS multiscale approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 387-412, May.
    3. Sitotaw Haile Erena & Hailu Worku, 2019. "Urban flood vulnerability assessments: the case of Dire Dawa city, Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 495-516, June.
    4. Bentivenga Mario & Prosser Giacomo & Guglielmi Paola & Palladino Giuseppe & Piccarreta Marco & Straziuso Katia & Cavalcante Francesco, 2023. "Landslides and predisposing factors of the Southern Apennines, Italy," Journal of Maps, Taylor & Francis Journals, vol. 19(1), pages 2137065-213, December.
    5. Minu Treesa Abraham & Neelima Satyam & Revuri Lokesh & Biswajeet Pradhan & Abdullah Alamri, 2021. "Factors Affecting Landslide Susceptibility Mapping: Assessing the Influence of Different Machine Learning Approaches, Sampling Strategies and Data Splitting," Land, MDPI, vol. 10(9), pages 1-24, September.
    6. Romulus Costache & Alireza Arabameri & Iulia Costache & Anca Crăciun & Binh Thai Pham, 2022. "New Machine Learning Ensemble for Flood Susceptibility Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4765-4783, September.
    7. Carlos Mestanza-Ramón & Robinson Ordoñez-Alcivar & Carla Arguello-Guadalupe & Katherin Carrera-Silva & Giovanni D’Orio & Salvatore Straface, 2022. "History, Socioeconomic Problems and Environmental Impacts of Gold Mining in the Andean Region of Ecuador," IJERPH, MDPI, vol. 19(3), pages 1-21, January.
    8. Fabio Luino & Mariano Barriendos & Fabrizio Terenzio Gizzi & Ruediger Glaser & Christoph Gruetzner & Walter Palmieri & Sabina Porfido & Heather Sangster & Laura Turconi, 2023. "Historical Data for Natural Hazard Risk Mitigation and Land Use Planning," Land, MDPI, vol. 12(9), pages 1-21, September.
    9. Deliang Sun & Haijia Wen & Yalan Zhang & Mengmeng Xue, 2021. "An optimal sample selection-based logistic regression model of slope physical resistance against rainfall-induced landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1255-1279, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    2. Francisco Javier Torrijo & Santiago Álvarez & Julio Garzón-Roca, 2024. "A Case Study of a Macro-Landslide in the High Mountain Areas of the Ecuadorian Andes: “La Cría” at the Azuay Province (Ecuador)," Land, MDPI, vol. 13(12), pages 1-23, November.
    3. Yang Yi & Chen Zhang & Jinqi Zhu & Yugang Zhang & Hao Sun & Hongzhang Kang, 2022. "Spatio-Temporal Evolution, Prediction and Optimization of LUCC Based on CA-Markov and InVEST Models: A Case Study of Mentougou District, Beijing," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    4. Rajesh Khatakho & Dipendra Gautam & Komal Raj Aryal & Vishnu Prasad Pandey & Rajesh Rupakhety & Suraj Lamichhane & Yi-Chung Liu & Khameis Abdouli & Rocky Talchabhadel & Bhesh Raj Thapa & Rabindra Adhi, 2021. "Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    5. Ismallianto Isia & Tony Hadibarata & Muhammad Noor Hazwan Jusoh & Rajib Kumar Bhattacharjya & Noor Fifinatasha Shahedan & Norma Latif Fitriyani & Muhammad Syafrudin, 2023. "Identifying Factors to Develop and Validate Social Vulnerability to Floods in Malaysia: A Systematic Review Study," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    6. Shairy Chaudhary & Atul Kumar & Malay Pramanik & Mahabir Singh Negi, 2022. "Land evaluation and sustainable development of ecotourism in the Garhwal Himalayan region using geospatial technology and analytical hierarchy process," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2225-2266, February.
    7. Garyfallos Arabatzis & Georgios Kolkos & Anastasia Stergiadou & Apostolos Kantartzis & Stergios Tampekis, 2024. "Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis," Sustainability, MDPI, vol. 16(2), pages 1-27, January.
    8. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    9. Yoshinori Shinohara & Yuta Watanabe, 2023. "Differences in factors determining landslide hazards among three types of landslides in Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1689-1705, September.
    10. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    11. Jiangping Gao & Xiangyang Shi & Linghui Li & Ziqiang Zhou & Junfeng Wang, 2022. "Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China," Sustainability, MDPI, vol. 14(24), pages 1-26, December.
    12. Oznur Isinkaralar & Kaan Isinkaralar & Dilara Yilmaz, 2023. "Climate-related spatial reduction risk of agricultural lands on the Mediterranean coast in Türkiye and scenario-based modelling of urban growth," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13199-13217, November.
    13. Yu Duan & Junnan Xiong & Weiming Cheng & Nan Wang & Yi Li & Yufeng He & Jun Liu & Wen He & Gang Yang, 2022. "Flood vulnerability assessment using the triangular fuzzy number-based analytic hierarchy process and support vector machine model for the Belt and Road region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 269-294, January.
    14. Paulo Campoverde-Muñoz & Luis Aguilar-Salas & Paola Romero-Crespo & Priscila E. Valverde-Armas & Karla Villamar-Marazita & Samantha Jiménez-Oyola & Daniel Garcés-León, 2022. "Risk Assessment of Groundwater Contamination in the Gala, Tenguel, and Siete River Basins, Ponce Enriquez Mining Area—Ecuador," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    15. Guorui Gao & Futao Wang & Zhenqing Wang & Qing Zhao & Litao Wang & Jinfeng Zhu & Wenliang Liu & Gang Qin & Yanfang Hou, 2024. "Multi-Scale Earthquake Damaged Building Feature Set," Data, MDPI, vol. 9(7), pages 1-19, June.
    16. Kiyeon Kim & Joonyoung Kim & Tae-Young Kwak & Choong-Ki Chung, 2018. "Logistic regression model for sinkhole susceptibility due to damaged sewer pipes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 765-785, September.
    17. Esteban Bravo-López & Tomás Fernández Del Castillo & Chester Sellers & Jorge Delgado-García, 2023. "Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods," Land, MDPI, vol. 12(6), pages 1-28, May.
    18. Chen Cao & Jianping Chen & Wen Zhang & Peihua Xu & Lianjing Zheng & Chun Zhu, 2019. "Geospatial Analysis of Mass-Wasting Susceptibility of Four Small Catchments in Mountainous Area of Miyun County, Beijing," IJERPH, MDPI, vol. 16(15), pages 1-19, August.
    19. Cheng Su & Lili Wang & Xizhi Wang & Zhicai Huang & Xiaocan Zhang, 2015. "Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1759-1779, April.
    20. Laura Turconi & Barbara Bono & Rebecca Genta & Fabio Luino, 2024. "The Effects of Flood Damage on Urban Road Networks in Italy: The Critical Function of Underpasses," Land, MDPI, vol. 13(9), pages 1-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9574-:d:1513196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.