IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v228y2020ics0378377419311308.html
   My bibliography  Save this article

Impacts of climate change on irrigation water requirement of date palms under future salinity trend in coastal aquifer of Tunisian oasis

Author

Listed:
  • Haj-Amor, Zied
  • Kumar Acharjee, Tapos
  • Dhaouadi, Latifa
  • Bouri, Salem

Abstract

In coastal saline areas, many studies ignore salinity problems when quantifying the impacts of climate change on irrigation water requirement. Based on 11 years (2008–2018) of field investigations in a Tunisian coastal oasis, this study simulated the changes in salinity in a coastal aquifer and quantified changes in net irrigation requirement (NIR) of date palm under climate change, considering required changes in leaching requirement. The future salinity in the aquifer was simulated based on sea level rise and changes in aquifer recharge. The study applied a statistical downscaling model (SDSM) to project future climate variables from 2019 to 2050, the SUTRA model to evaluate the change in aquifer salinity, and applied CROPWAT software to calculate NIR. Three climate change scenarios were considered: RCP8.5 (very high emission scenario), RCP6.0 (medium emission scenario) and RCP4.5 (lowest emission scenario). Several useful finding were revealed in this study. First, these three climate change scenarios showed significant trend of increasing annual maximum and minimum temperatures, relative humidity, wind speed, and solar radiation, and a significant decreasing trend of future rainfall. Second, the average aquifer salinity is expected to increase from an average of 4.2 dS m−1 in 2018 to about 5.3 dS m−1 in 2050. Seawater intrusion was identified as the main cause for this remarkable increase. Finally, NIR is expected to increase from an average value of 1459 mm year−1 during 2008–2018 to 1473–1950 mm year-1 during 2019–2050, depending on climate change scenario applied. Increase in aquifer salinity significantly contributed to this rapid increase of NIR. We believe that our results should be considered in developing adaptation strategies to manage future water resources in coastal areas.

Suggested Citation

  • Haj-Amor, Zied & Kumar Acharjee, Tapos & Dhaouadi, Latifa & Bouri, Salem, 2020. "Impacts of climate change on irrigation water requirement of date palms under future salinity trend in coastal aquifer of Tunisian oasis," Agricultural Water Management, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:agiwat:v:228:y:2020:i:c:s0378377419311308
    DOI: 10.1016/j.agwat.2019.105843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419311308
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Letey, J. & Hoffman, G.J. & Hopmans, J.W. & Grattan, S.R. & Suarez, D. & Corwin, D.L. & Oster, J.D. & Wu, L. & Amrhein, C., 2011. "Evaluation of soil salinity leaching requirement guidelines," Agricultural Water Management, Elsevier, vol. 98(4), pages 502-506, February.
    2. Tripler, Effi & Shani, Uri & Mualem, Yechezkel & Ben-Gal, Alon, 2011. "Long-term growth, water consumption and yield of date palm as a function of salinity," Agricultural Water Management, Elsevier, vol. 99(1), pages 128-134.
    3. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    4. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    5. Seung-Hwan, Yoo & Jin-Yong, Choi & Sang-Hyun, Lee & Yun-Gyeong, Oh & Dong Koun, Yun, 2013. "Climate change impacts on water storage requirements of an agricultural reservoir considering changes in land use and rice growing season in Korea," Agricultural Water Management, Elsevier, vol. 117(C), pages 43-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haghnazari, Farzad & Karandish, Fatemeh & Darzi-Naftchali, Abdullah & Šimůnek, Jiří, 2020. "Dynamic assessment of the impacts of global warming on nitrate losses from a subsurface-drained rainfed-canola field," Agricultural Water Management, Elsevier, vol. 242(C).
    2. Ahmed Karmaoui & Adil Moumane & Samir El Jaafari & Aziza Menouni & Jamal Al Karkouri & Mohammed Yacoubi & Lhoussain Hajji, 2023. "Thirty Years of Change in the Land Use and Land Cover of the Ziz Oases (Pre-Sahara of Morocco) Combining Remote Sensing, GIS, and Field Observations," Land, MDPI, vol. 12(12), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Zhen, Jingbo & Lazarovitch, Naftali & Tripler, Effi, 2020. "Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    4. Tripler, Effi & Shani, Uri & Ben-Gal, Alon & Mualem, Yechezkel, 2012. "Apparent steady state conditions in high resolution weighing-drainage lysimeters containing date palms grown under different salinities," Agricultural Water Management, Elsevier, vol. 107(C), pages 66-73.
    5. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    6. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Peragón, Juan M. & Pérez-Latorre, Francisco J. & Delgado, Antonio & Tóth, Tibor, 2018. "Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards," Agricultural Water Management, Elsevier, vol. 202(C), pages 33-41.
    8. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
    9. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    10. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    11. Abdullah Darzi-Naftchali & Henk Ritzema, 2018. "Integrating Irrigation and Drainage Management to Sustain Agriculture in Northern Iran," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    12. Tedeschi, A. & Lavini, A. & Riccardi, M. & Pulvento, C. & d'Andria, R., 2011. "Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality," Agricultural Water Management, Elsevier, vol. 98(9), pages 1329-1338, July.
    13. Al-Dakheel, Abdullah J. & Hussain, M. Iftikhar & Abdulrahman, Abdulqader & Abdullah, AlHarith, 2022. "Long term assessment of salinity impact on fruit yield in eighteen date palm varieties," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    15. Mojid, Mohammad A. & Mainuddin, Mohammed & Murad, Khandakar Faisal Ibn & Kirby, John Mac, 2021. "Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – Evidence from Bangladesh," Agricultural Water Management, Elsevier, vol. 251(C).
    16. Prudentia Zikalala & Isaya Kisekka & Mark Grismer, 2019. "Calibration and Global Sensitivity Analysis for a Salinity Model Used in Evaluating Fields Irrigated with Treated Wastewater in the Salinas Valley," Agriculture, MDPI, vol. 9(2), pages 1-33, February.
    17. S. Li & Wan Luo & Z. Jia & S. Tang & C. Chen, 2018. "The Pros and Cons of Encouraging Shallow Groundwater Use through Controlled Drainage in a Salt-Impacted Irrigation Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2475-2487, May.
    18. Meir, M. & Zaccai, M. & Raveh, E. & Ben-Asher, J. & Tel-Zur, N., 2014. "Performance of Ziziphus jujuba trees correlates with tissue mineral content under salinity conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 47-55.
    19. Vaughan, Peter & Letey, John, 2015. "Irrigation water amount and salinity dictate nitrogen requirement," Agricultural Water Management, Elsevier, vol. 157(C), pages 6-11.
    20. Giulia Marino & Daniele Zaccaria & Richard L. Snyder & Octavio Lagos & Bruce D. Lampinen & Louise Ferguson & Stephen R. Grattan & Cayle Little & Kristen Shapiro & Mahesh Lal Maskey & Dennis L. Corwin , 2019. "Actual Evapotranspiration and Tree Performance of Mature Micro-Irrigated Pistachio Orchards Grown on Saline-Sodic Soils in the San Joaquin Valley of California," Agriculture, MDPI, vol. 9(4), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:228:y:2020:i:c:s0378377419311308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.