IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i9d10.1007_s11269-021-02884-6.html
   My bibliography  Save this article

Oceanic-Atmospheric Variability Influences on Baseflows in the Continental United States

Author

Listed:
  • Hao Chen

    (Zhejiang University)

  • Ramesh S. V. Teegavarapu

    (Florida Atlantic University)

  • Yue-Ping Xu

    (Zhejiang University)

Abstract

Baseflows are one of the important components of streamflows and the influences of climate change and variability on changes in baseflows in space and time can aid in the management of low flows in watersheds. This study focuses on influences of climate variability on baseflows manifested through individual and coupled oceanic-atmospheric oscillations (viz., Atlantic multidecadal oscillation (AMO), El Niño-southern oscillation (ENSO), Pacific decadal oscillation (PDO), and North Atlantic oscillation (NAO)). Statistically significant differences in monthly baseflows in temporal windows that coincide with two phases (i.e., cool or warm; El Niño or La Niña) of oscillations at 574 gauging across least anthropogenically influenced across the continental the U.S. are evaluated in this study. Nonparametric statistical hypothesis tests are used to analyze these changes. Results from the analyses indicate that the influences of PDO and AMO on baseflows are the largest than other oscillations, and baseflows at only 12.2% of all sites were impacted by ENSO. The New England (01), Mid Atlantic (02), and Souris-Red-Rainy (09) regions displayed statistically significant differences in baseflow in two phases and with dominant influence attributed to the PDO cool phase. A total of 143 stations with higher baseflow median values during NAO warm/cool phase and El Niño. It is noted that the NAO cool phase/El Niño influences regional baseflows in the central U.S. and the NAO warm phase/ La Niña impacts baseflows in the southeastern U.S. The number of sites at which the baseflows were impacted by coupled oscillations was larger than those influenced by one oscillation.

Suggested Citation

  • Hao Chen & Ramesh S. V. Teegavarapu & Yue-Ping Xu, 2021. "Oceanic-Atmospheric Variability Influences on Baseflows in the Continental United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 3005-3022, July.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:9:d:10.1007_s11269-021-02884-6
    DOI: 10.1007/s11269-021-02884-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02884-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02884-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruqayah Mohammed & Miklas Scholz, 2019. "Climate Variability Impact on the Spatiotemporal Characteristics of Drought and Aridityin Arid and Semi-Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5015-5033, December.
    2. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    3. Debashish Goswami & Prasanta Kalita & Edward Mehnert, 2010. "Modeling and Simulation of Baseflow to Drainage Ditches During Low-flow Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 173-191, January.
    4. Mayank Suman & Rajib Maity, 2019. "Assessment of Streamflow Variability with Upgraded HydroClimatic Conceptual Streamflow Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1367-1382, March.
    5. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    2. Laura Şmuleac & Ciprian Rujescu & Adrian Șmuleac & Florin Imbrea & Isidora Radulov & Dan Manea & Anișoara Ienciu & Tabita Adamov & Raul Pașcalău, 2020. "Impact of Climate Change in the Banat Plain, Western Romania, on the Accessibility of Water for Crop Production in Agriculture," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    3. Kai Lun Chong & Sai Hin Lai & Yu Yao & Ali Najah Ahmed & Wan Zurina Wan Jaafar & Ahmed El-Shafie, 2020. "Performance Enhancement Model for Rainfall Forecasting Utilizing Integrated Wavelet-Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2371-2387, June.
    4. Tao Gao & Yifei Xu & Huixia Judy Wang & Qiaohong Sun & Lian Xie & Fuqiang Cao, 2022. "Combined Impacts of Climate Variability Modes on Seasonal Precipitation Extremes Over China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2411-2431, May.
    5. F. Pliakas & C. Petalas, 2011. "Determination of Hydraulic Conductivity of Unconsolidated River Alluvium from Permeameter Tests, Empirical Formulas and Statistical Parameters Effect Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2877-2899, September.
    6. Schilling, Keith E. & Streeter, Matthew T. & Vogelgesang, Jason & Jones, Christopher S. & Seeman, Anthony, 2020. "Subsurface nutrient export from a cropped field to an agricultural stream: Implications for targeting edge-of-field practices," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Md Golam Rabbani Fahad & Rouzbeh Nazari & M. H. Motamedi & Maryam E. Karimi, 2020. "Coupled Hydrodynamic and Geospatial Model for Assessing Resiliency of Coastal Structures under Extreme Storm Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1123-1138, February.
    8. Cheol Han Bang & Choon Seong Leem, 2020. "A New Perspective on the Supply and Demand of Weather Services," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    9. Cheng Cheng & Jinxi Song & Xunhong Chen & Deming Wang, 2011. "Statistical Distribution of Streambed Vertical Hydraulic Conductivity along the Platte River, Nebraska," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 265-285, January.
    10. Cihangir Koycegiz & Meral Buyukyildiz, 2023. "Investigation of spatiotemporal variability of some precipitation indices in Seyhan Basin, Turkey: monotonic and sub-trend analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2211-2244, March.
    11. A. C. Oscar-Júnior, 2021. "Precipitation Trends and Variability in River Basins in Urban Expansion Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 661-674, January.
    12. Stefan Koch & Andreas Bauwe & Bernd Lennartz, 2013. "Application of the SWAT Model for a Tile-Drained Lowland Catchment in North-Eastern Germany on Subbasin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 791-805, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:9:d:10.1007_s11269-021-02884-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.