IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v241y2020ics0378377420300093.html
   My bibliography  Save this article

Subsurface nutrient export from a cropped field to an agricultural stream: Implications for targeting edge-of-field practices

Author

Listed:
  • Schilling, Keith E.
  • Streeter, Matthew T.
  • Vogelgesang, Jason
  • Jones, Christopher S.
  • Seeman, Anthony

Abstract

It is understood that the major transport pathways for the soluble nutrients nitrate (NO3-N) and orthophosphorus (OP) from cropped fields to streams in the U.S. Cornbelt are tile drainage and groundwater seepage. The relative contribution of each, however, has not been well quantified and can vary between fields and watersheds. In this study, we used intermittent grab sample water quality monitoring and tile flow measurements, and the groundwater model MODFLOW to source dissolved nutrients from a cropped field to a low-order stream in the intensively-drained and cropped Des Moines Lobe landform of north central Iowa. Based on monitoring of eight tile outlets, nine groundwater wells and the receiving stream over a two-year period, nutrient loads from tiles were found to contribute approximately 98 % of the nitrate load to Hardin Creek. The loading pattern for OP was also dominated by discharge from constructed drainage, with 99.7 % sourced back to field tiles. Results from the farm field fit within the scaling pattern observed within the Des Moines Lobe region of Iowa showing that water yields and NO3-N loads are dominated by tile drainage at the field and local watershed scale. Loads dominated by tile flows suggest edge-of-field interception and treatment of tile water for mitigation of stream nutrients. Study results are consistent with local and regional assessments showing tile drainage to be an important pathway for both water and nutrients in the stream network of the US Cornbelt.

Suggested Citation

  • Schilling, Keith E. & Streeter, Matthew T. & Vogelgesang, Jason & Jones, Christopher S. & Seeman, Anthony, 2020. "Subsurface nutrient export from a cropped field to an agricultural stream: Implications for targeting edge-of-field practices," Agricultural Water Management, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420300093
    DOI: 10.1016/j.agwat.2020.106339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420300093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaspar, T.C. & Jaynes, D.B. & Parkin, T.B. & Moorman, T.B. & Singer, J.W., 2012. "Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water," Agricultural Water Management, Elsevier, vol. 110(C), pages 25-33.
    2. Mainul Hoque & Catherine L. Kling, 2016. "Economic Valuation of Ecosystem Benefits from Conservation Practices Targeted in Iowa Nutrient Reduction Strategy 2013: A Non Market Valuation Approach," Center for Agricultural and Rural Development (CARD) Publications 16-wp561, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    3. Singh, R. & Helmers, M.J. & Qi, Zhiming, 2006. "Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes," Agricultural Water Management, Elsevier, vol. 85(3), pages 221-232, October.
    4. Macrae, M.L. & English, M.C. & Schiff, S.L. & Stone, M., 2007. "Intra-annual variability in the contribution of tile drains to basin discharge and phosphorus export in a first-order agricultural catchment," Agricultural Water Management, Elsevier, vol. 92(3), pages 171-182, September.
    5. Debashish Goswami & Prasanta Kalita & Edward Mehnert, 2010. "Modeling and Simulation of Baseflow to Drainage Ditches During Low-flow Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 173-191, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghane, Ehsan & Askar, Manal H., 2021. "Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Helmers, M.J. & Abendroth, L. & Reinhart, B. & Chighladze, G. & Pease, L. & Bowling, L. & Youssef, M. & Ghane, E. & Ahiablame, L. & Brown, L. & Fausey, N. & Frankenberger, J. & Jaynes, D. & King, K. &, 2022. "Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast," Agricultural Water Management, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shr, Yau-Huo (Jimmy) & Zhang, Wendong, 2024. "Omitted downstream attributes and the benefits of nutrient reductions: Implications for choice experiments," Ecological Economics, Elsevier, vol. 222(C).
    2. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    3. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    4. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    5. Ji, Yongjie & Rabotyagov, sergey & Valcu-Lisman, Adriana, 2015. "Estimating Adoption of Cover Crops Using Preferences Revealed by a Dynamic Crop Choice Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205799, Agricultural and Applied Economics Association.
    6. Maaz Gardezi & J. Gordon Arbuckle, 2019. "Spatially Representing Vulnerability to Extreme Rain Events Using Midwestern Farmers’ Objective and Perceived Attributes of Adaptive Capacity," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 17-34, January.
    7. Catherine L. Kling & Yiannis Panagopoulos & Adriana Valcu-Lisman & Philip W. Gassman & Sergey Rabotyagov & Todd Campbell & Mike White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj Jha & Jeff Richa, 2014. "Land Use Model Integrating Agriculture and the Environment (LUMINATE): Linkages between Agricultural Land Use, Local Water Quality and Hypoxic Concerns in the Gulf of Mexico Basin," Center for Agricultural and Rural Development (CARD) Publications 14-wp546, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    8. Allred, Barry & Martinez, Luis & Khanal, Sami & Sawyer, Audrey H. & Rouse, Greg, 2022. "Subsurface drainage outlet detection in ditches and streams with UAV thermal infrared imagery: Preliminary research," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Rogovska, Natalia & O’Brien, Peter L. & Malone, Rob & Emmett, Bryan & Kovar, John L. & Jaynes, Dan & Kaspar, Thomas & Moorman, Thomas B. & Kyveryga, Peter, 2023. "Long-term conservation practices reduce nitrate leaching while maintaining yields in tile-drained Midwestern soils," Agricultural Water Management, Elsevier, vol. 288(C).
    11. Erin M. Silva & Virginia M. Moore, 2017. "Cover Crops as an Agroecological Practice on Organic Vegetable Farms in Wisconsin, USA," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    12. Qi, Zhiming & Singh, Ranvir & Helmers, Matthew J. & Zhou, Xiaobo, 2015. "Evaluating the performance of DRAINMOD using soil hydraulic parameters derived by various methods," Agricultural Water Management, Elsevier, vol. 155(C), pages 48-52.
    13. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    14. Konečná Jana & Karásek Petr & Fučík Petr & Podhrázská Jana & Pochop Michal & Ryšavý Stanislav & Hanák Roman, 2017. "Integration of soil and water conservation measures in an intensively cultivated watershed – a case study of Jihlava river basin (Czech Republic)," European Countryside, Sciendo, vol. 9(1), pages 17-28, March.
    15. Turunen, M. & Warsta, L. & Paasonen-Kivekäs, M. & Nurminen, J. & Myllys, M. & Alakukku, L. & Äijö, H. & Puustinen, M. & Koivusalo, H., 2013. "Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions," Agricultural Water Management, Elsevier, vol. 121(C), pages 135-148.
    16. Ale, Srinivasulu & Gowda, Prasanna H. & Mulla, David J. & Moriasi, Daniel N. & Youssef, Mohamed A., 2013. "Comparison of the performances of DRAINMOD-NII and ADAPT models in simulating nitrate losses from subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 129(C), pages 21-30.
    17. Roth, Richard T. & Ruffatti, Michael D. & O'Rourke, Patrick D. & Armstrong, Shalamar D., 2018. "A cost analysis approach to valuing cover crop environmental and nitrogen cycling benefits: A central Illinois on farm case study," Agricultural Systems, Elsevier, vol. 159(C), pages 69-77.
    18. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Contribution of tile drains to basin discharge and nitrogen export in a headwater agricultural watershed," Agricultural Water Management, Elsevier, vol. 158(C), pages 42-50.
    19. Revuelta-Acosta, J.D. & Flanagan, D.C. & Engel, B.A. & King, K.W., 2021. "Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge," Agricultural Water Management, Elsevier, vol. 244(C).
    20. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420300093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.