IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i12d10.1007_s11269-019-02364-y.html
   My bibliography  Save this article

Optimizing Multiple Linear Rules for Multi-Reservoir Hydropower Systems Using an Optimization Method with an Adaptation Strategy

Author

Listed:
  • Iman Ahmadianfar

    (Behbahan Khatam Alanbia University of Technology)

  • Omid Bozorg-Haddad

    (University of Tehran)

  • Xuefeng Chu

    (North Dakota State University)

Abstract

Water resources crisis has a significant impact on hydropower energy production, which highlights the importance of water resources management. Reservoirs are effective and powerful systems to manage water resources. Due to the growing water demands and the limited water resources, optimizing these systems to maximize the production of hydropower energy is an essential task. In this study, an effective differential evolution (DE) algorithm with mutation strategy adaptation (MSA-DE) is developed to promote the local and global search capabilities in a feasible domain. In addition, an elitist strategy is applied to escape local optimum trap. In the present study, the MSA-DE algorithm was applied to optimize the multiple linear rules for two multi-reservoir operation systems (3- and 4-reservoir systems) in Iran. In the 3-reservoir system, the best objective function value in 10 runs was 123.57 for the MSA-DE, while the corresponding values for the DE, artificial bee colony (ABC), and genetic algorithm (GA) were 126.42, 147.38, and 126.68, respectively. For the 4-reservoir system, the best objective function values for the MSA-DE, DE, ABC, and GA were 130.50, 159.75, 174.41, and 140.63, respectively. The results demonstrated that the MSA-DE algorithm can be used to derive optimal operating rules for multi-reservoir systems by enhancing appropriate solutions, while it still preserves the accuracy and efficiency of the solutions.

Suggested Citation

  • Iman Ahmadianfar & Omid Bozorg-Haddad & Xuefeng Chu, 2019. "Optimizing Multiple Linear Rules for Multi-Reservoir Hydropower Systems Using an Optimization Method with an Adaptation Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4265-4286, September.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:12:d:10.1007_s11269-019-02364-y
    DOI: 10.1007/s11269-019-02364-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02364-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02364-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arvin Samadi-koucheksaraee & Iman Ahmadianfar & Omid Bozorg-Haddad & Seyed Amin Asghari-pari, 2019. "Gradient Evolution Optimization Algorithm to Optimize Reservoir Operation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 603-625, January.
    2. Mehrdad Taghian & Iman Ahmadianfar, 2018. "Maximizing the Firm Energy Yield Preserving Total Energy Generation Via an Optimal Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 141-154, January.
    3. J. Yazdi & A. Moridi, 2018. "Multi-Objective Differential Evolution for Design of Cascade Hydropower Reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4779-4791, November.
    4. Richard Bellman, 1954. "On some applications of the theory of dynamic programming to logistics," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(2), pages 141-153, June.
    5. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    6. Onur Hınçal & A. Altan-Sakarya & A. Metin Ger, 2011. "Optimization of Multireservoir Systems by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1465-1487, March.
    7. Mohammad Ehteram & Hojat Karami & Sayed Farhad Mousavi & Saaed Farzin & Alcigeimes B. Celeste & Ahmad-El Shafie, 2018. "Reservoir Operation by a New Evolutionary Algorithm: Kidney Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4681-4706, November.
    8. C. Dai & Y. P. Cai & W. T. Lu & H. Liu & H. C. Guo, 2016. "Conjunctive Water Use Optimization for Watershed-Lake Water Distribution System under Uncertainty: a Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4429-4449, September.
    9. Richard Bellman, 1954. "Some Applications of the Theory of Dynamic Programming---A Review," Operations Research, INFORMS, vol. 2(3), pages 275-288, August.
    10. Takriti, Samer & Krasenbrink, Benedikt, 1999. "A decomposition approach for the fuel-constrained economic power-dispatch problem," European Journal of Operational Research, Elsevier, vol. 112(2), pages 460-466, January.
    11. Omid Bozorg Haddad & Abbas Afshar & Miguel Mariño, 2008. "Design-Operation of Multi-Hydropower Reservoirs: HBMO Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1709-1722, December.
    12. Md. Hossain & A. El-shafie, 2013. "Intelligent Systems in Optimizing Reservoir Operation Policy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3387-3407, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alan de Gois Barbosa & Alcigeimes B. Celeste & Ludmilson Abritta Mendes, 2021. "Influence of Inflow Nonstationarity on the Multipurpose Optimal Operation of Hydropower Plants Using Nonlinear Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2343-2367, June.
    2. Kobra Rahmati & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2021. "Application of the Grasshopper Optimization Algorithm (GOA) to the Optimal Operation of Hydropower Reservoir Systems Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4325-4348, October.
    3. Inkyung Min & Nakyung Lee & Sanha Kim & Yelim Bang & Juyeon Jang & Kichul Jung & Daeryong Park, 2024. "An Improved Aggregation–Decomposition Optimization Approach for Ecological Flow Supply in Parallel Reservoir Systems," Sustainability, MDPI, vol. 16(17), pages 1-22, August.
    4. Xuan Wang & Wenchong Tian & Zhenliang Liao, 2021. "Offline Optimization of Sluice Control Rules in the Urban Water System for Flooding Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 949-962, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iman Ahmadianfar & Saeed Noshadian & Nadir Ahmed Elagib & Meysam Salarijazi, 2021. "Robust Diversity-based Sine-Cosine Algorithm for Optimizing Hydropower Multi-reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3513-3538, September.
    2. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    3. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    4. Sedighkia, Mahdi & Abdoli, Asghar, 2023. "An optimization approach for managing environmental impacts of generating hydropower on fish biodiversity," Renewable Energy, Elsevier, vol. 218(C).
    5. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    6. Dawei Chen & Fangxu Mo & Ye Chen & Jun Zhang & Xinyu You, 2022. "Optimization of Ramp Locations along Freeways: A Dynamic Programming Approach," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
    7. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    8. Vanvuchelen, Nathalie & De Boeck, Kim & Boute, Robert N., 2024. "Cluster-based lateral transshipments for the Zambian health supply chain," European Journal of Operational Research, Elsevier, vol. 313(1), pages 373-386.
    9. Bartłomiej Kocot & Paweł Czarnul & Jerzy Proficz, 2023. "Energy-Aware Scheduling for High-Performance Computing Systems: A Survey," Energies, MDPI, vol. 16(2), pages 1-28, January.
    10. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2021. "A Multi-Depot Vehicle Routing Problem with Stochastic Road Capacity and Reduced Two-Stage Stochastic Integer Linear Programming Models for Rollout Algorithm," Mathematics, MDPI, vol. 9(13), pages 1-44, July.
    11. Vartika Paliwal & Aniruddha D. Ghare & Ashwini B. Mirajkar & Neeraj Dhanraj Bokde & Andrés Elías Feijóo Lorenzo, 2019. "Computer Modeling for the Operation Optimization of Mula Reservoir, Upper Godavari Basin, India, Using the Jaya Algorithm," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    12. Peter Schober & Julian Valentin & Dirk Pflüger, 2022. "Solving High-Dimensional Dynamic Portfolio Choice Models with Hierarchical B-Splines on Sparse Grids," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 185-224, January.
    13. Matthias Breuer & David Windisch, 2019. "Investment Dynamics and Earnings‐Return Properties: A Structural Approach," Journal of Accounting Research, Wiley Blackwell, vol. 57(3), pages 639-674, June.
    14. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    15. Michael J. Pennock & William B. Rouse & Diane L. Kollar, 2007. "Transforming the Acquisition Enterprise: A Framework for Analysis and a Case Study of Ship Acquisition," Systems Engineering, John Wiley & Sons, vol. 10(2), pages 99-117, June.
    16. Quetschlich, Mathias & Moetz, André & Otto, Boris, 2021. "Optimisation model for multi-item multi-echelon supply chains with nested multi-level products," European Journal of Operational Research, Elsevier, vol. 290(1), pages 144-158.
    17. Li, Yapeng & Tang, Xiaolin & Lin, Xianke & Grzesiak, Lech & Hu, Xiaosong, 2022. "The role and application of convex modeling and optimization in electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    18. Ge, Fangsheng & Beullens, Patrick & Hudson, Dominic, 2021. "Optimal economic ship speeds, the chain effect, and future profit potential," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 168-196.
    19. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2022. "A Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision State Rollout Algorithm in Reinforcement Learning," Mathematics, MDPI, vol. 10(15), pages 1-70, July.
    20. Katakam V SeethaRam, 2021. "Three Level Rule Curve for Optimum Operation of a Multipurpose Reservoir using Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 353-368, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:12:d:10.1007_s11269-019-02364-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.