IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i9d10.1007_s11269-020-02556-x.html
   My bibliography  Save this article

Coupled Model of Variable Fuzzy Sets and the Analytic Hierarchy Process and its Application to the Social and Environmental Impact Evaluation of Dam Breaks

Author

Listed:
  • Guanjie He

    (Xi’an University of Technology)

  • Junrui Chai

    (Xi’an University of Technology)

  • Yuan Qin

    (Xi’an University of Technology)

  • Zengguang Xu

    (Xi’an University of Technology)

  • Shouyi Li

    (Xi’an University of Technology)

Abstract

Dam construction is important for economic development. However, the safety risks posed by dangerous dams are unacceptable. The need for the consequence evaluation of dam breaks has been increasing to reduce all types of losses caused by dam breaks in downstream areas. However, research on this topic is relatively scarce, particularly in the field of social and environmental impact assessments. This study combined the analytic hierarchy process, variable fuzzy set, and an index system to overcome the limitations of traditional evaluation methods and the problem in which the obtained evaluation level cannot be located accurately. An integrated variable fuzzy evaluation model was proposed to evaluate the social and environmental impact of dam breaks. To explore and compare the presented method with other traditional methods, a case study of the Changlong Reservoir was conducted. The comparison results showed that the proposed method features accurate algorithms and a scientific evaluation process. It can convey the severity of social and environmental impact to a certain degree by using the eigenvector of level H, which can improve the accuracy of assessment results. Meanwhile, various factors in the object to be evaluated were comprehensively considered. Therefore, the proposed method can be applied to the social and environmental impact evaluation of dam breaks.

Suggested Citation

  • Guanjie He & Junrui Chai & Yuan Qin & Zengguang Xu & Shouyi Li, 2020. "Coupled Model of Variable Fuzzy Sets and the Analytic Hierarchy Process and its Application to the Social and Environmental Impact Evaluation of Dam Breaks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2677-2697, July.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:9:d:10.1007_s11269-020-02556-x
    DOI: 10.1007/s11269-020-02556-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02556-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02556-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enliang Guo & Jiquan Zhang & Xuehui Ren & Qi Zhang & Zhongyi Sun, 2014. "Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 947-965, November.
    2. Armando Serrano‐Lombillo & Ignacio Escuder‐Bueno & Manuel G. de Membrillera‐Ortuño & Luis Altarejos‐García, 2011. "Methodology for the Calculation of Annualized Incremental Risks in Systems of Dams," Risk Analysis, John Wiley & Sons, vol. 31(6), pages 1000-1015, June.
    3. Morales-Torres, Adrián & Escuder-Bueno, Ignacio & Serrano-Lombillo, Armando & Castillo Rodríguez, Jesica T., 2019. "Dealing with epistemic uncertainty in risk-informed decision making for dam safety management," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Banerjee, Arundhuti & Chakraborty, Tanusree & Matsagar, Vasant, 2018. "Evaluation of possibilities in geothermal energy extraction from oceanic crust using offshore wind turbine monopiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 685-700.
    5. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    6. M. Peng & L. Zhang, 2012. "Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 903-933, October.
    7. Ruirui Sun & Xiaoling Wang & Zhengyin Zhou & Xuefei Ao & Xiaopei Sun & Mingrui Song, 2014. "Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part I: model development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1547-1568, September.
    8. Zhengyin Zhou & Xiaoling Wang & Ruirui Sun & Xuefei Ao & Xiaopei Sun & Mingrui Song, 2014. "Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part II: Model application and results," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 675-700, June.
    9. Jianzhu Li & Senming Tan & Zhaozhen Wei & Fulong Chen & Ping Feng, 2014. "A New Method of Change Point Detection Using Variable Fuzzy Sets Under Environmental Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5125-5138, November.
    10. Wei Ge & Zongkun Li & Robert Y. Liang & Wei Li & Yingchun Cai, 2017. "Methodology for Establishing Risk Criteria for Dams in Developing Countries, Case Study of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4063-4074, October.
    11. Feng Yan & Ling Liu & You Zhang & Musong Chen & Ning Chen, 2016. "The Research of Dynamic Variable Fuzzy Set Assessment Model in Water Quality Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 63-78, January.
    12. Fearnside, Philip M., 2016. "Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry," World Development, Elsevier, vol. 77(C), pages 48-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liansheng Sang & Jun Wang & Jueyi Sui & Mauricio Dziedzic, 2022. "A New Approach for Dam Safety Assessment Using the Extended Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5785-5798, December.
    2. Seyed Farhan Moosavian & Daryoosh Borzuei & Abolfazl Ahmadi, 2022. "Cost Analysis of Water Quality Assessment Using Multi-Criteria Decision-Making Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4843-4862, September.
    3. Eslam Mohammed Abdelkader & Abobakr Al-Sakkaf & Ghasan Alfalah & Nehal Elshaboury, 2022. "Hybrid Differential Evolution-Based Regression Tree Model for Predicting Downstream Dam Hazard Potential," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    4. Alireza Khoshkonesh & Seyed Hossein Sadeghi & Saeed Gohari & Somayyeh Karimpour & Shahin Oodi & Silvia Francesco, 2023. "Study of Dam-Break Flow Over a Vegetated Channel With and Without a Drop," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2107-2123, March.
    5. Nehal Elshaboury & Tarek Attia & Mohamed Marzouk, 2020. "Comparison of Several Aggregation Techniques for Deriving Analytic Network Process Weights," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4901-4919, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Ge & Zongkun Li & Wei Li & Meimei Wu & Juanjuan Li & Yipeng Pan, 2020. "Risk evaluation of dam-break environmental impacts based on the set pair analysis and cloud model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1641-1653, November.
    2. Rui Liu & Yun Chen & Jianping Wu & Lei Gao & Damian Barrett & Tingbao Xu & Xiaojuan Li & Linyi Li & Chang Huang & Jia Yu, 2017. "Integrating Entropy‐Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 756-773, April.
    3. Dongjing Huang & Zhongbo Yu & Yiping Li & Dawei Han & Lili Zhao & Qi Chu, 2017. "Calculation method and application of loss of life caused by dam break in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 39-57, January.
    4. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    5. Fluixá-Sanmartín, Javier & Escuder-Bueno, Ignacio & Morales-Torres, Adrián & Castillo-Rodríguez, Jesica Tamara, 2020. "Comprehensive decision-making approach for managing time dependent dam risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Alaa Ahmed & Guna Hewa & Abdullah Alrajhi, 2021. "Flood susceptibility mapping using a geomorphometric approach in South Australian basins," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 629-653, March.
    7. Junfei Chen & Menghua Deng & Lu Xia & Huimin Wang, 2017. "Risk Assessment of Drought, Based on IDM-VFS in the Nanpan River Basin, Yunnan Province, China," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    8. Chong-Xun Mo & Gui-Yan Mo & Liu Peng & Qing Yang & Xin-Rong Zhu & Qing-Ling Jiang & Ju-Liang Jin, 2019. "Quantitative Vulnerability Model of Earth Dam Overtopping and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1801-1815, March.
    9. Alireza Khoshkonesh & Blaise Nsom & Farhad Bahmanpouri & Fariba Ahmadi Dehrashid & Atefeh Adeli, 2021. "Numerical Study of the Dynamics and Structure of a Partial Dam-Break Flow Using the VOF Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1513-1528, March.
    10. Pei, Liang & Chen, Chen & He, Kun & Lu, Xiang, 2022. "System reliability of a gravity dam-foundation system using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    11. Ahmet Ozan Celik & Volkan Kiricci & Canberk Insel, 2017. "Reassessment of the flood damage at a river diversion hydropower plant site: lessons learned from a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 833-847, March.
    12. Xiaoling Wang & Wenlong Chen & Zhengyin Zhou & Yushan Zhu & Cheng Wang & Zhen Liu, 2017. "Three-dimensional flood routing of a dam break based on a high-precision digital model of a dense urban area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1147-1174, April.
    13. Wang, Te & Li, Zongkun & Ge, Wei & Zhang, Hua & Zhang, Yadong & Sun, Heqiang & Jiao, Yutie, 2023. "Risk consequence assessment of dam breach in cascade reservoirs considering risk transmission and superposition," Energy, Elsevier, vol. 265(C).
    14. Bhatta, Arun & Bigsby, Hugh R. & Cullen, Ross, 2011. "Alternative to Comprehensive Ecosystem Services Markets: The Contribution of Forest-Related Programs in New Zealand," 2011 Conference, August 25-26, 2011, Nelson, New Zealand 115350, New Zealand Agricultural and Resource Economics Society.
    15. Daniel Schatz & Rabih Bashroush, 0. "Economic valuation for information security investment: a systematic literature review," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    16. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    17. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    18. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
    19. Pengxia Zhao & Tie Li & Biao Wang & Ming Li & Yu Wang & Xiahui Guo & Yue Yu, 2022. "The Scenario Construction and Evolution Method of Casualties in Liquid Ammonia Leakage Based on Bayesian Network," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    20. Bertomeu, M. & Romero, C., 2001. "Managing forest biodiversity: a zero-one goal programming approach," Agricultural Systems, Elsevier, vol. 68(3), pages 197-213, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:9:d:10.1007_s11269-020-02556-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.