IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v72y2014i2p675-700.html
   My bibliography  Save this article

Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part II: Model application and results

Author

Listed:
  • Zhengyin Zhou
  • Xiaoling Wang
  • Ruirui Sun
  • Xuefei Ao
  • Xiaopei Sun
  • Mingrui Song

Abstract

The present model and methodology described in Part I of this work are applied to perform a comprehensive risk analysis of the dam-break flood of five reservoirs in the Haihe River Basin, China. The results indicate that the three-dimensional numerical simulation considering complex terrain can reflect the characteristics of flood routing and the three-dimensional phenomena. Based on the simulation results, it can be concluded that the risk grades of the consequences induced by a gradual or instantaneous dam break of the Dongwushi reservoir are extremely serious, as determined through the attribute synthetic approach. The results obtained from ranking the risk by the technique for order performance by similarity to ideal solution method are that the Dongwushi reservoir has the most serious consequences when the dam breaks followed by the Lincheng reservoir, the Miaogong reservoir and the Yunzhou reservoir, and the Youyi reservoir has the least severe consequences. Though the ranking of the relatively comprehensive risk coincides with that of the consequences, the dam safety measured by the dam failure probability plays an important role in ranking the risk. A sensitivity analysis is performed by individually increasing the weight of each criterion by 20 %, and the ranking order is not changed, suggesting that the evaluation model is reasonable, stable and reliable. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Zhengyin Zhou & Xiaoling Wang & Ruirui Sun & Xuefei Ao & Xiaopei Sun & Mingrui Song, 2014. "Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part II: Model application and results," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 675-700, June.
  • Handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:675-700
    DOI: 10.1007/s11069-013-1029-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-1029-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-1029-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen Zhang & Jian-ping Chen & Qing Wang & Yuke An & Xin Qian & Liangjun Xiang & Longxiang He, 2013. "Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1073-1100, March.
    2. Antoniou, I & Ivanov, V.V & Korolev, Yu.L & Kryanev, A.V & Matokhin, V.V & Suchanecki, Z, 2002. "Analysis of resources distribution in economics based on entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 304(3), pages 525-534.
    3. A. Sepehr & C. Zucca, 2012. "Ranking desertification indicators using TOPSIS algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1137-1153, July.
    4. Shuiabi, Eyas & Thomson, Vince & Bhuiyan, Nadia, 2005. "Entropy as a measure of operational flexibility," European Journal of Operational Research, Elsevier, vol. 165(3), pages 696-707, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongjing Huang & Zhongbo Yu & Yiping Li & Dawei Han & Lili Zhao & Qi Chu, 2017. "Calculation method and application of loss of life caused by dam break in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 39-57, January.
    2. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    3. Ahmet Ozan Celik & Volkan Kiricci & Canberk Insel, 2017. "Reassessment of the flood damage at a river diversion hydropower plant site: lessons learned from a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 833-847, March.
    4. Chong-Xun Mo & Gui-Yan Mo & Liu Peng & Qing Yang & Xin-Rong Zhu & Qing-Ling Jiang & Ju-Liang Jin, 2019. "Quantitative Vulnerability Model of Earth Dam Overtopping and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1801-1815, March.
    5. Alireza Khoshkonesh & Blaise Nsom & Farhad Bahmanpouri & Fariba Ahmadi Dehrashid & Atefeh Adeli, 2021. "Numerical Study of the Dynamics and Structure of a Partial Dam-Break Flow Using the VOF Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1513-1528, March.
    6. Wei Ge & Zongkun Li & Wei Li & Meimei Wu & Juanjuan Li & Yipeng Pan, 2020. "Risk evaluation of dam-break environmental impacts based on the set pair analysis and cloud model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1641-1653, November.
    7. Rui Liu & Yun Chen & Jianping Wu & Lei Gao & Damian Barrett & Tingbao Xu & Xiaojuan Li & Linyi Li & Chang Huang & Jia Yu, 2017. "Integrating Entropy‐Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 756-773, April.
    8. Guanjie He & Junrui Chai & Yuan Qin & Zengguang Xu & Shouyi Li, 2020. "Coupled Model of Variable Fuzzy Sets and the Analytic Hierarchy Process and its Application to the Social and Environmental Impact Evaluation of Dam Breaks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2677-2697, July.
    9. Alaa Ahmed & Guna Hewa & Abdullah Alrajhi, 2021. "Flood susceptibility mapping using a geomorphometric approach in South Australian basins," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 629-653, March.
    10. Xiaoling Wang & Wenlong Chen & Zhengyin Zhou & Yushan Zhu & Cheng Wang & Zhen Liu, 2017. "Three-dimensional flood routing of a dam break based on a high-precision digital model of a dense urban area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1147-1174, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrico Teich & Thorsten Claus, 2017. "Measurement of Load and Capacity Flexibility in Manufacturing," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(4), pages 291-302, December.
    2. Jha, Pradeep K. & Jha, Rakhi & Datt, Rajul & Guha, Sujoy K., 2011. "Entropy in good manufacturing system: Tool for quality assurance," European Journal of Operational Research, Elsevier, vol. 211(3), pages 658-665, June.
    3. Rui Liu & Yun Chen & Jianping Wu & Lei Gao & Damian Barrett & Tingbao Xu & Xiaojuan Li & Linyi Li & Chang Huang & Jia Yu, 2017. "Integrating Entropy‐Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 756-773, April.
    4. Wahab, M.I.M. & Stoyan, S.J., 2008. "A dynamic approach to measure machine and routing flexibilities of manufacturing systems," International Journal of Production Economics, Elsevier, vol. 113(2), pages 895-913, June.
    5. Hang Zheng & Clive Lyle & Zhongjing Wang, 2014. "A Comparative Study of Flexibility in Water Allocation in the Context of Hydrologic Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 785-800, February.
    6. Fleischhacker, Adam J. & Fok, Pak-Wing, 2015. "On the relationship between entropy, demand uncertainty, and expected loss," European Journal of Operational Research, Elsevier, vol. 245(2), pages 623-628.
    7. Antoniou, I & Ivanov, V.V & Kryanev, A.V & Matokhin, V.V & Shapovalov, M.V, 2004. "On the efficient resources distribution in economics based on entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 549-562.
    8. Wen Zhang & Qing Wang & Jianping Chen & Huizhong Li & Jinsheng Que & Yuanyuan Kong, 2015. "Grain-Size Analysis of Debris Flow Alluvial Fans in Panxi Area along Jinsha River, China," Sustainability, MDPI, vol. 7(11), pages 1-24, November.
    9. Yongchao Li & Jianping Chen & Chun Tan & Yang Li & Feifan Gu & Yiwei Zhang & Qaiser Mehmood, 2021. "Application of the borderline-SMOTE method in susceptibility assessments of debris flows in Pinggu District, Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2499-2522, February.
    10. Hualin Xie & Yanwei Zhang & Zhilong Wu & Tiangui Lv, 2020. "A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions," Land, MDPI, vol. 9(1), pages 1-37, January.
    11. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    12. Shanjun Liu & Shiyao Liu & Donglin Lv & Lianhuan Wei & Meng Ao & Xingyu Pan & Bing Li & Yuan Cui & Lun Wang & Xin He, 2024. "Debris flow susceptibility and hazard assessment in Fushun based on hydrological response units," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8667-8693, July.
    13. Seebacher, Gottfried & Winkler, Herwig, 2014. "Evaluating flexibility in discrete manufacturing based on performance and efficiency," International Journal of Production Economics, Elsevier, vol. 153(C), pages 340-351.
    14. Gong, Zhejun, 2008. "An economic evaluation model of supply chain flexibility," European Journal of Operational Research, Elsevier, vol. 184(2), pages 745-758, January.
    15. Chen Cao & Peihua Xu & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Hazard Assessment of Debris-Flow along the Baicha River in Heshigten Banner, Inner Mongolia, China," IJERPH, MDPI, vol. 14(1), pages 1-19, December.
    16. Navin K. Dev & Ravi Shankar & Angappa Gunasekaran & Lakshman S. Thakur, 2016. "A hybrid adaptive decision system for supply chain reconfiguration," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7100-7114, December.
    17. Sagi Akron & Roy Gelbard, 2020. "Software code flexibility profitability in light of technology life cycle," Operational Research, Springer, vol. 20(2), pages 723-746, June.
    18. Olivella, Jordi & Corominas, Albert & Pastor, Rafael, 2010. "An entropy-based measurement of working time flexibility," European Journal of Operational Research, Elsevier, vol. 200(1), pages 253-260, January.
    19. J. Arismendi-Zambrano & R. Azevedo, 2020. "Implicit Entropic Market Risk-Premium from Interest Rate Derivatives," Economics Department Working Paper Series n303-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    20. Seebacher, Gottfried & Winkler, Herwig, 2015. "A capability approach to evaluate supply chain flexibility," International Journal of Production Economics, Elsevier, vol. 167(C), pages 177-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:675-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.