IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i12d10.1007_s11269-022-03281-3.html
   My bibliography  Save this article

Cost Analysis of Water Quality Assessment Using Multi-Criteria Decision-Making Approach

Author

Listed:
  • Seyed Farhan Moosavian

    (University of Tehran)

  • Daryoosh Borzuei

    (Iran University of Science & Technology)

  • Abolfazl Ahmadi

    (Iran University of Science & Technology)

Abstract

In modern competitive markets, cost and quality parameters are the two main factors. So, it is essential to study their relationship, especially in leading industries such as urban public service companies. Consequently, manufacturers always try to reduce production costs and improve product quality and services to consumer expectations. Also, the concerns of the new century in the field of fresh water and the reduction of its resources related to global warming have increased the costs of quality and supply of freshwater. Therefore, in this research, in order to estimate the quality costs in the field of water resources and wastewater management and identify the option that creates the most cost, in the first step, the “Prevention, Assessment, and Failure (PAF)” model was used to select cost-imposing options in organizational quality analysis. After determining the main options, appropriate criteria and sub-criteria were selected under the main study area (water and wastewater resources management). In the next step, a “Multiple-Criteria Decision-Making (MCDM) “ method based on the “Fuzzy Analytical Hierarchy Process (FAHP)” and “Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)” method was used to identify the option that creates the most cost. The results show that The highest cost of quality in the water and wastewater industry and its management are related to “Assessment Costs” and account for 36.55% of total costs. Also, The lowest cost of quality in the water and wastewater industry is related to “Preventive Costs” and accounts for only 12.18% of the total cost. In addition, the expert’s opinion shows that the effect of increasing credit with 34.01% has the greatest weight, and this criterion is the most essential in water and wastewater resources management.

Suggested Citation

  • Seyed Farhan Moosavian & Daryoosh Borzuei & Abolfazl Ahmadi, 2022. "Cost Analysis of Water Quality Assessment Using Multi-Criteria Decision-Making Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4843-4862, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03281-3
    DOI: 10.1007/s11269-022-03281-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03281-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03281-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaher H. Zyoud & Daniela Fuchs-Hanusch, 2020. "An Integrated Decision-Making Framework to Appraise Water Losses in Municipal Water Systems," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1293-1326, August.
    2. Guanjie He & Junrui Chai & Yuan Qin & Zengguang Xu & Shouyi Li, 2020. "Coupled Model of Variable Fuzzy Sets and the Analytic Hierarchy Process and its Application to the Social and Environmental Impact Evaluation of Dam Breaks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2677-2697, July.
    3. R. Jaiswal & Narayan Ghosh & A. Lohani & T. Thomas, 2015. "Fuzzy AHP Based Multi Crteria Decision Support for Watershed Prioritization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4205-4227, September.
    4. Bruno Brentan & Silvia Carpitella & Daniel Barros & Gustavo Meirelles & Antonella Certa & Joaquín Izquierdo, 2021. "Water Quality Sensor Placement: A Multi-Objective and Multi-Criteria Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 225-241, January.
    5. Ishizaka, Alessio & Siraj, Sajid, 2018. "Are multi-criteria decision-making tools useful? An experimental comparative study of three methods," European Journal of Operational Research, Elsevier, vol. 264(2), pages 462-471.
    6. Hasan Ture & Seyyide Dogan & Deniz Kocak, 2019. "Assessing Euro 2020 Strategy Using Multi-criteria Decision Making Methods: VIKOR and TOPSIS," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(2), pages 645-665, April.
    7. Dožić, Slavica & Lutovac, Tatjana & Kalić, Milica, 2018. "Fuzzy AHP approach to passenger aircraft type selection," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 165-175.
    8. Gianluigi Busico & Elisabetta Giuditta & Nerantzis Kazakis & Nicolò Colombani, 2019. "A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    9. Ho, William & Xu, Xiaowei & Dey, Prasanta K., 2010. "Multi-criteria decision making approaches for supplier evaluation and selection: A literature review," European Journal of Operational Research, Elsevier, vol. 202(1), pages 16-24, April.
    10. Mohammad Ebrahim Banihabib & Mohammad Hadi Shabestari, 2017. "Fuzzy Hybrid MCDM Model for Ranking the Agricultural Water Demand Management Strategies in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 495-513, January.
    11. Inas El-Gafy & Defne Apul, 2021. "Expanding the Dynamic Modeling of Water-Food-Energy Nexus to Include Environmental, Economic, and Social Aspects Based on Life Cycle Assessment Thinking," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4349-4362, October.
    12. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    13. Modak, Mousumi & Pathak, Khanindra & Ghosh, Kunal Kanti, 2017. "Performance evaluation of outsourcing decision using a BSC and Fuzzy AHP approach: A case of the Indian coal mining organization," Resources Policy, Elsevier, vol. 52(C), pages 181-191.
    14. Daniel Crespo & Jose Albiac & Taher Kahil & Encarna Esteban & Safa Baccour, 2019. "Tradeoffs between Water Uses and Environmental Flows: A Hydroeconomic Analysis in the Ebro Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2301-2317, May.
    15. Meisam Shokoohi & Massoud Tabesh & Sara Nazif & Mehdi Dini, 2017. "Water Quality Based Multi-objective Optimal Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 93-108, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoaei, Mersad & Hajinezhad, Ahmad & Moosavian, Seyed Farhan, 2023. "Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    2. Noori, Amir & Bonakdari, Hossein & Salimi, Amir Hossein & Gharabaghi, Bahram, 2021. "A group Multi-Criteria Decision-Making method for water supply choice optimization," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    3. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    4. Nehal Elshaboury & Tarek Attia & Mohamed Marzouk, 2020. "Comparison of Several Aggregation Techniques for Deriving Analytic Network Process Weights," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4901-4919, December.
    5. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    6. Calabrese, Armando & Costa, Roberta & Levialdi, Nathan & Menichini, Tamara, 2019. "Integrating sustainability into strategic decision-making: A fuzzy AHP method for the selection of relevant sustainability issues," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 155-168.
    7. Ozalp Vayvay & Yigit Ozcan & Maria Manuela Cruz-Cunha, 2012. "ERP consultant selection problem using AHP, fuzzy AHP and ANP: A case study in Turkey," E3 Journal of Business Management and Economics., E3 Journals, vol. 3(3), pages 106-117.
    8. Shaher H. Zyoud & Daniela Fuchs-Hanusch, 2019. "Comparison of Several Decision-Making Techniques: A Case of Water Losses Management in Developing Countries," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1551-1578, September.
    9. Kiracı, Kasım & Akan, Ercan, 2020. "Aircraft selection by applying AHP and TOPSIS in interval type-2 fuzzy sets," Journal of Air Transport Management, Elsevier, vol. 89(C).
    10. Nuri Ozgur DOGAN, 2015. "Analyzing The Supplier Selection Process Of A Lean Manufacturing Firm: A Case Study," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 9(1), pages 1026-1033, November.
    11. Yiqing Sun & Zhenzhong Shen & Weihua Fang & Jiaao Yu & Lei Gan & Liqun Xu & Runying Wang & Hongwei Zhang & Ruiwen Liu & Congcong Zhou & Zhangxin Huang, 2024. "Evaluation of ecologically clean small watersheds in the Yangtze river estuary area of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26147-26170, October.
    12. Hayk Manucharyan, 2020. "Dealing with uncertainties of green supplier selection: a fuzzy approach," Working Papers 2020-13, Faculty of Economic Sciences, University of Warsaw.
    13. Havle, Celal Alpay & Kılıç, Bilal, 2019. "A hybrid approach based on the fuzzy AHP and HFACS framework for identifying and analyzing gross navigation errors during transatlantic flights," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 21-30.
    14. Jamali, Narjes & Feylizadeh, Mohammad Reza & Liu, Peide, 2021. "Prioritization of aircraft maintenance unit strategies using fuzzy Analytic Network Process: A case study," Journal of Air Transport Management, Elsevier, vol. 93(C).
    15. T. Sivageerthi & Bathrinath Sankaranarayanan & Syed Mithun Ali & Koppiahraj Karuppiah, 2022. "Modelling the Relationships among the Key Factors Affecting the Performance of Coal-Fired Thermal Power Plants: Implications for Achieving Clean Energy," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    16. Longlong Ye & Guang Song & Shaohua Song, 2024. "Enhancing Economic, Resilient, and Sustainable Outcomes Through Supplier Selection and Order Allocation in the Food Manufacturing Industry: A Hybrid Delphi-FAHP-FMOP Method," Mathematics, MDPI, vol. 12(21), pages 1-25, October.
    17. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    18. Alptekin Ulutaş & Ayşe Topal & Dragan Pamučar & Željko Stević & Darjan Karabašević & Gabrijela Popović, 2022. "A New Integrated Multi-Criteria Decision-Making Model for Sustainable Supplier Selection Based on a Novel Grey WISP and Grey BWM Methods," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    19. Jianxiong Zhang & Lin Feng & Wansheng Tang, 2014. "Optimal Contract Design of Supplier-Led Outsourcing Based on Pontryagin Maximum Principle," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 592-607, May.
    20. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03281-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.