IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i9d10.1007_s11269-019-02300-0.html
   My bibliography  Save this article

Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality Management

Author

Listed:
  • Fei Li

    (The Hong Kong Polytechnic University)

  • Xu-Feng Yan

    (Sichuan University)

  • Huan-Feng Duan

    (The Hong Kong Polytechnic University)

Abstract

With the increasing emphasis and application of the flooding control and mitigation measures of detention tank (DT) and low impact development (LID) in urban stormwater drainage systems (USDSs), the complex drainage flow process and corresponding water quality issues have also aroused great of interests and attentions from researchers and practitioners. This paper contributes to study the urban flooding control and water quality management with the implementation of DTs and LIDs in the USDS. A many-objective optimization (MOO) based design framework and analysis method is developed for achieving four objectives of USDS design. A realistic USDS is adopted for the case study, in which the DTs and LIDs are implemented by this extended MOO-based design method to achieve the optimal result of flooding risk control and water quality improvement. The obtained results are further analyzed for the characteristics of flooding risk control and water quality component evolution in the USDS. The results and analysis demonstrate the effectiveness and applicability of the designed DTs and LIDs to mitigate the flooding risk and improve water quality in USDS.

Suggested Citation

  • Fei Li & Xu-Feng Yan & Huan-Feng Duan, 2019. "Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3271-3288, July.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:9:d:10.1007_s11269-019-02300-0
    DOI: 10.1007/s11269-019-02300-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02300-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02300-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vassilios Tsihrintzis & Rizwan Hamid, 1997. "Modeling and Management of Urban Stormwater Runoff Quality: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(2), pages 136-164, April.
    2. Fei Li & Huan-Feng Duan & Hexiang Yan & Tao Tao, 2015. "Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: Framework Development and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2125-2137, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao-Che Ho & Hong-Yuan Lee & Yao-Jung Tsai & Yuan-Shun Chang, 2022. "Numerical Experiments on Low Impact Development for Urban Resilience Index," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    2. Omid Seyedashraf & Andrea Bottacin-Busolin & Julien J. Harou, 2021. "Many-Objective Optimization of Sustainable Drainage Systems in Urban Areas with Different Surface Slopes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2449-2464, June.
    3. Wei Lu & Xiaosheng Qin, 2019. "An Integrated Fuzzy Simulation-Optimization Model for Supporting Low Impact Development Design under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4351-4365, September.
    4. Xinyu Dong & Peng Yuan & Yonghui Song & Wenxuan Yi, 2021. "Optimizing Green-Gray Infrastructure for Non-Point Source Pollution Control under Future Uncertainties," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    5. Asterios Stroumpoulis & Evangelia Kopanaki & George Karaganis, 2021. "Examining the Relationship between Information Systems, Sustainable SCM, and Competitive Advantage," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    6. Zanko Zandsalimi & Sajjad Feizabadi & Jafar Yazdi & Seyed Ali Akbar Salehi Neyshabouri, 2024. "Evaluating the Impact of Digital Elevation Models on Urban Flood Modeling: A Comprehensive Analysis of Flood Inundation, Hazard Mapping, and Damage Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4243-4268, September.
    7. Husnain Tansar & Huan-Feng Duan & Ole Mark, 2022. "Catchment-Scale and Local-Scale Based Evaluation of LID Effectiveness on Urban Drainage System Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 507-526, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Daksiya & H. T. Su & Y. H. Chang & Edmond Y. M. Lo, 2017. "Incorporating socio-economic effects and uncertain rainfall in flood mitigation decision using MCDA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 515-531, May.
    2. Sang-Soo Han & Zhi Chen & Fa-Yi Zhou & Xiu-Qing Lu, 2014. "Assessment of Suspended Solid Removal in a Surface Flow Constructed Wetland Using a Three-Dimensional Numerical Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3111-3125, August.
    3. S. Tang & W. Luo & Z. Jia & W. Liu & S. Li & Y. Wu, 2016. "Evaluating Retention Capacity of Infiltration Rain Gardens and Their Potential Effect on Urban Stormwater Management in the Sub-Humid Loess Region of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 983-1000, February.
    4. Omid Seyedashraf & Andrea Bottacin-Busolin & Julien J. Harou, 2021. "Many-Objective Optimization of Sustainable Drainage Systems in Urban Areas with Different Surface Slopes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2449-2464, June.
    5. Vassilios A. Tsihrintzis, 2017. "The use of Vertical Flow Constructed Wetlands in Wastewater Treatment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3245-3270, August.
    6. Wen Zhang & Jing Li & Yunhao Chen & Yang Li, 2019. "A Surrogate-Based Optimization Design and Uncertainty Analysis for Urban Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4201-4214, September.
    7. Azam Haidary & Bahman Amiri & Jan Adamowski & Nicola Fohrer & Kaneyuki Nakane, 2013. "Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2217-2229, May.
    8. Vassilios Tsihrintzis & Hector Fuentes & Rao Gadipudi, 1997. "GIS-Aided Modeling of Nonpoint Source Pollution Impacts on Surface and Ground Waters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(3), pages 207-218, June.
    9. An Liu & Dunzhu Li & Liang Liu & Yuntao Guan, 2014. "Understanding the Role of Urban Road Surface Characteristics in influencing Stormwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5217-5229, November.
    10. Alexandros I. Stefanakis, 2019. "The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    11. V. M. Jayasooriya & A. W. M. Ng & S. Muthukumaran & B. J. C. Perera, 2016. "Optimal Sizing of Green Infrastructure Treatment Trains for Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5407-5420, November.
    12. Zachary Christman & Mahbubur Meenar & Lynn Mandarano & Kyle Hearing, 2018. "Prioritizing Suitable Locations for Green Stormwater Infrastructure Based on Social Factors in Philadelphia," Land, MDPI, vol. 7(4), pages 1-17, November.
    13. Elisa Palazzo & Sisi Wang, 2022. "Landscape Design for Flood Adaptation from 20 Years of Constructed Ecologies in China," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    14. Lei Yao & Liding Chen & Wei Wei, 2017. "Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China," IJERPH, MDPI, vol. 14(3), pages 1-16, February.
    15. Juan An & Fenli Zheng & Mathias Römkens & Guifang Li & Qingsen Yang & Leilei Wen & Bin Wang, 2013. "The role of soil surface water regimes and raindrop impact on hillslope soil erosion and nutrient losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 411-430, June.
    16. Jun Wang & Yiping Guo, 2020. "Proper Sizing of Infiltration Trenches Using Closed-Form Analytical Equations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3809-3821, September.
    17. Mariana Marchioni & Roberto Fedele & Anita Raimondi & John Sansalone & Gianfranco Becciu, 2022. "Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1879-1895, April.
    18. Huan-Feng Duan & Fei Li & Hexiang Yan, 2016. "Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4635-4648, October.
    19. Barah, Masoud & Khojandi, Anahita & Li, Xueping & Hathaway, Jon & Omitaomu, OluFemi, 2021. "Optimizing green infrastructure placement under precipitation uncertainty," Omega, Elsevier, vol. 100(C).
    20. Xiang Chen & Weiqi Zhou & Steward T. A. Pickett & Weifeng Li & Lijian Han, 2016. "Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China," IJERPH, MDPI, vol. 13(5), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:9:d:10.1007_s11269-019-02300-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.