IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i11d10.1007_s11269-024-03862-4.html
   My bibliography  Save this article

Evaluating the Impact of Digital Elevation Models on Urban Flood Modeling: A Comprehensive Analysis of Flood Inundation, Hazard Mapping, and Damage Estimation

Author

Listed:
  • Zanko Zandsalimi

    (University of Virginia)

  • Sajjad Feizabadi

    (Louisiana State University)

  • Jafar Yazdi

    (Shahid Beheshti University)

  • Seyed Ali Akbar Salehi Neyshabouri

    (Tarbiat Modares University)

Abstract

Digital Elevation Models (DEMs) play a crucial role in flood management. This study aims to assess the effect of various global DEMs (GDEMs), including ALOS-12.5 m, ALOS-30 m, SRTM-30 m, SRTM-90 m, and NASADEM-30 m, on flood risk modeling in a densely urban area. The 1D-2D MIKE FLOOD hydraulic model was employed for the flood modeling. The process involved using a high-resolution DEM (Pleiades-1A 1 m) as the reference map (RM1), along with other GDEMs, to simulate a 50-year return period flood. The performance of GDEMs was then assessed in terms of flood inundation extent, flood hazard, and flood damage estimation, assessing their accuracy against the RM1. The study also explored the trade-offs between accuracy and efficiency by examining the effects of substituting the high-resolution map with a 5-m resolution map (Res_5 m) created through resampling. Results revealed that GDEMs tend to overestimate flood extent and underestimate depth, leading to inaccurate flood risk assessments. Among the GDEMs, NASADEM-30 and SRTM-30 outperformed others in simulating flood inundation extent but resulted in a more uniform flood depth distribution; approximately 70% of the flood extent was categorized with depths of less than 0.3 m, nearly double that of the RM1. This discrepancy led to an underestimation and overestimation of higher (H3-H6) and lower (H1) hazard levels by approximately 50%, respectively. Furthermore, GDEMs significantly overestimated flood damages, with NASADEM-30 showing a 161% overestimation compared to the RM1. Ultimately, the Res_5 m was a viable alternative for urban flood simulations as it led only to a modest 6% decrease in the flood zone area.

Suggested Citation

  • Zanko Zandsalimi & Sajjad Feizabadi & Jafar Yazdi & Seyed Ali Akbar Salehi Neyshabouri, 2024. "Evaluating the Impact of Digital Elevation Models on Urban Flood Modeling: A Comprehensive Analysis of Flood Inundation, Hazard Mapping, and Damage Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4243-4268, September.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:11:d:10.1007_s11269-024-03862-4
    DOI: 10.1007/s11269-024-03862-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03862-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03862-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José Pinho & Rui Ferreira & Luís Vieira & Dirk Schwanenberg, 2015. "Comparison Between Two Hydrodynamic Models for Flooding Simulations at River Lima Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 431-444, January.
    2. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    3. M. Karamouz & F. Fooladi Mahani, 2021. "DEM Uncertainty Based Coastal Flood Inundation Modeling Considering Water Quality Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3083-3103, August.
    4. Ji Shen & Fangbi Tan, 2020. "Effects of DEM resolution and resampling technique on building treatment for urban inundation modeling: a case study for the 2016 flooding of the HUST campus in Wuhan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 927-957, October.
    5. Dhruvesh Patel & Prashant Srivastava, 2013. "Flood Hazards Mitigation Analysis Using Remote Sensing and GIS: Correspondence with Town Planning Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2353-2368, May.
    6. Fei Li & Xu-Feng Yan & Huan-Feng Duan, 2019. "Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3271-3288, July.
    7. Shokoufeh Khojeh & Behzad Ataie-Ashtiani & Seiyed Mossa Hosseini, 2022. "Effect of DEM resolution in flood modeling: a case study of Gorganrood River, Northeastern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2673-2693, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omid Seyedashraf & Andrea Bottacin-Busolin & Julien J. Harou, 2021. "Many-Objective Optimization of Sustainable Drainage Systems in Urban Areas with Different Surface Slopes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2449-2464, June.
    2. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    3. Ruben Prütz & Peter Månsson, 2021. "A GIS-based approach to compare economic damages of fluvial flooding in the Neckar River basin under current conditions and future scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1807-1834, September.
    4. Xinyu Dong & Peng Yuan & Yonghui Song & Wenxuan Yi, 2021. "Optimizing Green-Gray Infrastructure for Non-Point Source Pollution Control under Future Uncertainties," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    5. Tusar Kanti Hembram & Sunil Saha, 2020. "Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1241-1268, February.
    6. Yanbo Duan & Yu Gary Gao & Yusen Zhang & Huawei Li & Zhonghui Li & Ziying Zhou & Guohang Tian & Yakai Lei, 2022. "“The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics," Land, MDPI, vol. 11(11), pages 1-23, October.
    7. Hao-Che Ho & Hong-Yuan Lee & Yao-Jung Tsai & Yuan-Shun Chang, 2022. "Numerical Experiments on Low Impact Development for Urban Resilience Index," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    8. Asterios Stroumpoulis & Evangelia Kopanaki & George Karaganis, 2021. "Examining the Relationship between Information Systems, Sustainable SCM, and Competitive Advantage," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    9. C. Sharma & A. Mishra & S. Panda, 2014. "Assessing Impact of Flood on River Dynamics and Susceptible Regions: Geomorphometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2615-2638, July.
    10. Zhouyayan Li & Jerry Mount & Ibrahim Demir, 2022. "Accounting for uncertainty in real-time flood inundation mapping using HAND model: Iowa case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 977-1004, May.
    11. Xuan Wang & Wenchong Tian & Zhenliang Liao, 2021. "Offline Optimization of Sluice Control Rules in the Urban Water System for Flooding Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 949-962, February.
    12. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    13. Sudhir Singh & Prashant Srivastava & Avinash Pandey & Sandeep Gautam, 2013. "Integrated Assessment of Groundwater Influenced by a Confluence River System: Concurrence with Remote Sensing and Geochemical Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4291-4313, September.
    14. Dhruvesh P. Patel & Jorge A. Ramirez & Prashant K. Srivastava & Michaela Bray & Dawei Han, 2017. "Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 93-130, October.
    15. Azazkhan Pathan & Komali Kantamaneni & Prasit Agnihotri & Dhruvesh Patel & Saif Said & Sudhir Kumar Singh, 2022. "Integrated Flood Risk Management Approach Using Mesh Grid Stability and Hydrodynamic Model," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    16. Glauco Gallotti & Marco Antonio Santo & Ilektra Apostolidou & Jacopo Alessandri & Alberto Armigliato & Bidroha Basu & Sisay Debele & Alessio Domeneghetti & Alejandro Gonzalez-Ollauri & Prashant Kumar , 2021. "On the Management of Nature-Based Solutions in Open-Air Laboratories: New Insights and Future Perspectives," Resources, MDPI, vol. 10(4), pages 1-21, April.
    17. Weiwei Jiang & Jingshan Yu, 2022. "Impact of rainstorm patterns on the urban flood process superimposed by flash floods and urban waterlogging based on a coupled hydrologic–hydraulic model: a case study in a coastal mountainous river b," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 301-326, May.
    18. Carmine Gambardella & Rosaria Parente & Anna Scotto di Santolo & Giuseppe Ciaburro, 2022. "New Digital Field of Drawing and Survey for the Automatic Identification of Debris Accumulation in Flooded Areas," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    19. Ibrahim Sufiyan & Razak Zakariya & Ibrahim Rosnan Yaacob, 2018. "Delineation Of Flood Risk Zones And 3D Modeling In Terengganu River Catchment Using Gis And Swat," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 2(2), pages 1-5, January.
    20. Mehrnoosh Taherizadeh & Arman Niknam & Thong Nguyen-Huy & Gábor Mezősi & Reza Sarli, 2023. "Flash flood-risk areas zoning using integration of decision-making trial and evaluation laboratory, GIS-based analytic network process and satellite-derived information," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2309-2335, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:11:d:10.1007_s11269-024-03862-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.