IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i15d10.1007_s11269-021-03011-1.html
   My bibliography  Save this article

Evaluating Spatiotemporal Variations in the Impact of Inter-basin Water Transfer Projects in Water-receiving Basin

Author

Listed:
  • Lijun Jiao

    (Beijing Normal University)

  • Ruimin Liu

    (Beijing Normal University)

  • Linfang Wang

    (Shanxi Research Academy of Environmental Science)

  • Lin Li

    (Beijing Normal University)

  • Leiping Cao

    (Beijing Normal University)

Abstract

Inter-basin water transfer (IBWT) has been widely applied to solve the water resource crisis in water shortage areas, and its impact on the ecological environment of water-recipient areas has gained increasing attention in recent years. In this study, based on the Soil and Water Assessment Tool (SWAT) model, the average monthly channel flow and water environmental capacity (WEC) with or without IBWT projects were simulated and quantified in the Fenhe River basin of China. The results showed that the IBWT projects significantly improved the flow of 63% of channels, and the increase in the dry season (80%) was much higher than that in the wet season (20%). The changes in the ideal WEC were positively correlated with the channel flow, while the remnant WEC showed different change trends in different channels and seasons. Spatially, the remnant WEC decreased in a few upstream channels and increased in the downstream channels. Seasonally, IBWT projects had different seasonal effects on the remnant WECs of total nitrogen (TN) and total phosphorus (TP). In the dry season, the remnant WEC of TN decreased by 2% after IBWT, while the remnant WEC of TP increased by 140%. In the wet season, the remnant WEC of TN increased by 4%, while the remnant WEC of TP decreased by 80%. Through a long-term simulation of IBWT projects, this study reduced the uncertainties caused by random changes in the hydrological environment. These results could provide effective guidance for management after the construction of IBWT projects.

Suggested Citation

  • Lijun Jiao & Ruimin Liu & Linfang Wang & Lin Li & Leiping Cao, 2021. "Evaluating Spatiotemporal Variations in the Impact of Inter-basin Water Transfer Projects in Water-receiving Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5409-5429, December.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:15:d:10.1007_s11269-021-03011-1
    DOI: 10.1007/s11269-021-03011-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-03011-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-03011-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    2. Jon Barnett & Sarah Rogers & Michael Webber & Brian Finlayson & Mark Wang, 2015. "Sustainability: Transfer project cannot meet China's water needs," Nature, Nature, vol. 527(7578), pages 295-297, November.
    3. Hamidreza Manshadi & Mohammad Niksokhan & Mojtaba Ardestani, 2015. "A Quantity-Quality Model for Inter-basin Water Transfer System Using Game Theoretic and Virtual Water Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4573-4588, October.
    4. Mohammad Nikoo & Reza Kerachian & Hamed Poorsepahy-Samian, 2012. "An Interval Parameter Model for Cooperative Inter-Basin Water Resources Allocation Considering the Water Quality Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3329-3343, September.
    5. Zhang, Dejian & Chen, Xingwei & Yao, Huaxia & Lin, Bingqing, 2015. "Improved calibration scheme of SWAT by separating wet and dry seasons," Ecological Modelling, Elsevier, vol. 301(C), pages 54-61.
    6. Xue-hua Zhao & Xu Chen, 2015. "Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2913-2926, June.
    7. Wenquan Gu & Dongguo Shao & Xuezhi Tan & Chen Shu & Zhen Wu, 2017. "Simulation and Optimization of Multi-Reservoir Operation in Inter-Basin Water Transfer System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3401-3412, September.
    8. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    9. Changwen Li & Ling Kang, 2014. "A New Modified Tennant Method with Spatial-Temporal Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4911-4926, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Shengming & Zhang, Yunyun & Hu, Yao & Wang, Hui, 2024. "Born by water: Does water resource reallocation promote entrepreneurship?," China Economic Review, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhisong Chen & Lingling Pei, 2018. "Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization," Sustainability, MDPI, vol. 10(4), pages 1-28, April.
    2. Luís Loures & José Gama & José Rato Nunes & António Lopez-Piñeiro, 2017. "Assessing the Sodium Exchange Capacity in Rainfed and Irrigated Soils in the Mediterranean Basin Using GIS," Sustainability, MDPI, vol. 9(3), pages 1-12, March.
    3. Marcella Maia Urtiga & Danielle Costa Morais & Keith W. Hipel & D. Marc Kilgour, 2017. "Group Decision Methodology to Support Watershed Committees in Choosing Among Combinations of Alternatives," Group Decision and Negotiation, Springer, vol. 26(4), pages 729-752, July.
    4. Bo Peng & Kun Lei, 2021. "An Analytical Approach for Initial Allocation of Discharge Permits with Consideration of the Water Environmental Capacity and Industrial Technical Feasibility," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    5. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    6. Yunquan Zhang & Peiling Yang, 2022. "Agricultural Water Optimal Allocation Using Minimum Cross-Entropy and Entropy-Weight-Based TOPSIS Method in Hetao Irrigation District, Northwest China," Agriculture, MDPI, vol. 12(6), pages 1-18, June.
    7. Zhipeng Fan & Xiang Fu & Xiaodan Zhao, 2024. "A Bargaining with Negotiation Cost for Water Use and Pollution Conflict Management," Sustainability, MDPI, vol. 17(1), pages 1-22, December.
    8. Gao, Jie & Zhuo, La & Duan, Ximing & Wu, Pute, 2023. "Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Xiaokuan Ni & Zengchuan Dong & Wei Xie & Shujun Wu & Mufeng Chen & Hongyi Yao & Wenhao Jia, 2022. "A Practical Approach for Environmental Flow Calculation to Support Ecosystem Management in Wujiang River, China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    10. De Girolamo, Anna Maria & Barca, Emanuele & Pappagallo, Giuseppe & Lo Porto, Antonio, 2017. "Simulating ecologically relevant hydrological indicators in a temporary river system," Agricultural Water Management, Elsevier, vol. 180(PB), pages 194-204.
    11. Liangyan Tao & Xuebi Su & Saad Ahmed Javed, 2021. "Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm," Group Decision and Negotiation, Springer, vol. 30(5), pages 1085-1112, October.
    12. Giovanni Pino & Pierluigi Toma & Cristian Rizzo & Pier Paolo Miglietta & Alessandro M. Peluso & Gianluigi Guido, 2017. "Determinants of Farmers’ Intention to Adopt Water Saving Measures: Evidence from Italy," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    13. Yue, Qiong & Zhang, Fan & Zhang, Chenglong & Zhu, Hua & Tang, Yikuan & Guo, Ping, 2020. "A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 230(C).
    14. Dan Li & Bingjun Liu & Changqing Ye, 2022. "Meteorological and hydrological drought risks under changing environment on the Wanquan River Basin, Southern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2941-2967, December.
    15. Wei Qu & Yanmei Tan & Zhentao Li & Eefje Aarnoudse & Qin Tu, 2020. "Agricultural Water Use Efficiency—A Case Study of Inland-River Basins in Northwest China," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    16. Emanuela Sassu & Riccardo Zucca & Giovanni M. Sechi, 2021. "Calibration Procedure of Regional Flow Duration Curves Evaluating Water Resource Withdrawal from Diversion Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1135-1148, March.
    17. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    18. He, Shawei & Marc Kilgour, D. & Hipel, Keith W., 2017. "A general hierarchical graph model for conflict resolution with application to greenhouse gas emission disputes between USA and China," European Journal of Operational Research, Elsevier, vol. 257(3), pages 919-932.
    19. Azizallah Izady & Mohammad Sadegh Khorshidi & Mohammad Reza Nikoo & Ali Al-Maktoumi & Mingjie Chen & Hilal Al-Mamari & Amir H. Gandomi, 2021. "Optimal Water Allocation from Subsurface Dams: A Risk-Based Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4275-4290, September.
    20. Reza Rezaiy & Ani Shabri, 2024. "An innovative hybrid W-EEMD-ARIMA model for drought forecasting using the standardized precipitation index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 13513-13542, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:15:d:10.1007_s11269-021-03011-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.