IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i13p3427-3444.html
   My bibliography  Save this article

A Novel Solution for Stochastic Dynamic Game of Water Allocation from a Reservoir Using Collocation Method

Author

Listed:
  • Mehran Homayounfar
  • Arman Ganji
  • C. Martinez

Abstract

In this study, a continuous model of stochastic dynamic game for water allocation from a reservoir system was developed. The continuous random variable of inflow in the state transition function was replaced with a discrete approximant rather than using the mean of the random variable as is done in a continuous model of deterministic dynamic game. As a result, a new solution method was used to solve the stochastic model of game based on collocation method. The collocation method was introduced as an alternative to linear-quadratic (LQ) approximation methods to resolve a dynamic model of game. The collocation method is not limited to the first and second degree approximations, compared to LQ approximation, i.e. Ricatti equations. Furthermore, in spite of LQ related problems, consideration of the stochastic nature of game on the action variables in the collocation method would be possible. The proposed solution method was applied to the real case of reservoir operation, which typically requires considering the effect of uncertainty on decision variables. The results of the solution of the stochastic model of game are compared with the results of a deterministic solution of game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP), and a discrete stochastic dynamic game model (PSDNG). By comparing the results of alternative methods, it is shown that the proposed solution method of stochastic dynamic game is quite capable of providing appropriate reservoir operating policies. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Mehran Homayounfar & Arman Ganji & C. Martinez, 2011. "A Novel Solution for Stochastic Dynamic Game of Water Allocation from a Reservoir Using Collocation Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3427-3444, October.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:13:p:3427-3444
    DOI: 10.1007/s11269-011-9863-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9863-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9863-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    2. A. Ganji & D. Khalili & M. Karamouz & K. Ponnambalam & M. Javan, 2008. "A Fuzzy Stochastic Dynamic Nash Game Analysis of Policies for Managing Water Allocation in a Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 51-66, January.
    3. LaFrance, Jeffrey T. & Barney, L. Dwayne, 1991. "The envelope theorem in dynamic optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 15(2), pages 355-385, April.
    4. Frederic H. Murphy & Michael A. Toman & Howard J. Weiss, 1987. "A Stochastic Dynamic Nash Game Analysis of Policies for Managing the Strategic Petroleum Reserves of Consuming Nations," Management Science, INFORMS, vol. 33(4), pages 484-499, April.
    5. Yong Li & Guo Huang, 2008. "Interval-parameter Two-stage Stochastic Nonlinear Programming for Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 681-698, June.
    6. Murray-Rust, H. & Sally, H. & Salemi, H. R. & Mamanpoush, A., 2000. "An overview of the hydrology of the Zayandeh Rud Basin," IWMI Research Reports H028241, International Water Management Institute.
    7. Provencher, Bill & Bishop, Richard C., 1997. "An Estimable Dynamic Model of Recreation Behavior with an Application to Great Lakes Angling," Journal of Environmental Economics and Management, Elsevier, vol. 33(2), pages 107-127, June.
    8. Mojtaba Sadegh & Najmeh Mahjouri & Reza Kerachian, 2010. "Optimal Inter-Basin Water Allocation Using Crisp and Fuzzy Shapley Games," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2291-2310, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryam Ghashghaie & Safar Marofi & Hossein Marofi, 2014. "Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5055-5072, November.
    2. Sabah Fayaed & Ahmed El-Shafie & Othman Jaafar, 2013. "Integrated Artificial Neural Network (ANN) and Stochastic Dynamic Programming (SDP) Model for Optimal Release Policy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3679-3696, August.
    3. Mehdi Zomorodian & Sai Hin Lai & Mehran Homayounfar & Shaliza Ibrahim & Gareth Pender, 2017. "Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-24, December.
    4. Mehran Homayounfar & Sai Lai & Mehdi Zommorodian & Amin Oroji & Arman Ganji & Sara Kaviani, 2015. "Developing a Non-Discrete Dynamic Game Model and Corresponding Monthly Collocation Solution Considering Variability in Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2599-2618, June.
    5. Mohammad Ehteram & Samira Ghotbi & Ozgur Kisi & Ahmed EL-Shafie, 2019. "Application of a Coordination Model for a Large Number of Stakeholders with a New Game Theory Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5207-5230, December.
    6. Xiqin Wang & Yuan Zhang & Yong Zeng & Changming Liu, 2013. "Resolving Trans-jurisdictional Water Conflicts by the Nash Bargaining Method: A Case Study in Zhangweinan Canal Basin in North China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1235-1247, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehran Homayounfar & Sai Lai & Mehdi Zommorodian & Amin Oroji & Arman Ganji & Sara Kaviani, 2015. "Developing a Non-Discrete Dynamic Game Model and Corresponding Monthly Collocation Solution Considering Variability in Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2599-2618, June.
    2. Maryam Ghashghaie & Safar Marofi & Hossein Marofi, 2014. "Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5055-5072, November.
    3. Li, W. & Li, Y.P. & Li, C.H. & Huang, G.H., 2010. "An inexact two-stage water management model for planning agricultural irrigation under uncertainty," Agricultural Water Management, Elsevier, vol. 97(11), pages 1905-1914, November.
    4. Richard E. Howitt & Siwa Msangi & Arnaud Reynaud & Keith C. Knapp, 2005. "Estimating Intertemporal Preferences for Natural Resource Allocation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 969-983.
    5. Avagyan, Vardan & Esteban-Bravo, Mercedes & Vidal-Sanz, Jose M., 2014. "Licensing radical product innovations to speed up the diffusion," European Journal of Operational Research, Elsevier, vol. 239(2), pages 542-555.
    6. Francisco Gallego & Andrés Hernando, 2009. "School Choice in Chile: Looking at the Demand Side," Documentos de Trabajo 356, Instituto de Economia. Pontificia Universidad Católica de Chile..
    7. Salerno, Gillian & Beard, Rodney & McDonald, Stuart, 2007. "Rent Seeking Behavior and Optimal Taxation of Pollution in Shallow Lakes," MPRA Paper 11225, University Library of Munich, Germany, revised 22 Oct 2008.
    8. Maria Casanova-Rivas, 2008. "Dynamic Complementarities: A Computational and Empirical Analysis of Couples' Retirement Decisions," 2008 Meeting Papers 1073, Society for Economic Dynamics.
    9. Andreas Lanz & Gregor Reich & Ole Wilms, 2022. "Adaptive grids for the estimation of dynamic models," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 179-238, June.
    10. Karantounias, Anastasios G., 2023. "Doubts about the model and optimal policy," Journal of Economic Theory, Elsevier, vol. 210(C).
    11. Pelin Ilbas, 2006. "Optimal Monetary Policy rules for the Euro area in a DSGE framework," Working Papers of Department of Economics, Leuven ces0613, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    12. Atanas Christev, 2006. "Learning Hyperinflations," Computing in Economics and Finance 2006 475, Society for Computational Economics.
    13. Borovička, Jaroslav & Hansen, Lars Peter, 2014. "Examining macroeconomic models through the lens of asset pricing," Journal of Econometrics, Elsevier, vol. 183(1), pages 67-90.
    14. Nikolaj Malchow-Møller & Michael Svarer, 2003. "Estimation of the multinomial logit model with random effects," Applied Economics Letters, Taylor & Francis Journals, vol. 10(7), pages 389-392.
    15. Röhrs, Sigrid & Winter, Christoph, 2017. "Reducing government debt in the presence of inequality," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 1-20.
    16. Gomme, Paul & Klein, Paul, 2011. "Second-order approximation of dynamic models without the use of tensors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 604-615, April.
    17. Wieland, Volker, 2000. "Monetary policy, parameter uncertainty and optimal learning," Journal of Monetary Economics, Elsevier, vol. 46(1), pages 199-228, August.
    18. Adam, Klaus & Billi, Roberto M., 2006. "Optimal Monetary Policy under Commitment with a Zero Bound on Nominal Interest Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(7), pages 1877-1905, October.
    19. Levine, Paul & Pearlman, Joseph & Pierse, Richard, 2008. "Linear-quadratic approximation, external habit and targeting rules," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3315-3349, October.
    20. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:13:p:3427-3444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.