IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p119-d1554539.html
   My bibliography  Save this article

A Bargaining with Negotiation Cost for Water Use and Pollution Conflict Management

Author

Listed:
  • Zhipeng Fan

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

  • Xiang Fu

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

  • Xiaodan Zhao

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

Abstract

The intensifying overexploitation of water resources and the increasing pollution discharge have exacerbated conflicts in water resource utilization, making it urgent to effectively reconcile the contradiction between water resource utilization and environmental protection. This study developed a Cost-Inclusive Multi-Objective Bargaining Methodology (CIMB), coupled with a Compromise Programming (CP) method, to address conflicts between water use and pollution discharge, considering the economic benefits and the sustainable development of water resources. A deterministic multi-objective bargaining approach was employed, with two players representing the maximization of water use benefits and the minimization of total pollution discharge. This study takes the middle and lower reaches of the Han River region as an example to optimize water resource allocation in ten cities in this area. Using the CIMB-CP model, the water use and pollution discharge for different cities were obtained, and the impact of various factors on the game outcomes was analyzed. The model results indicate that negotiation cost have a significant impact on the Nash equilibrium solution. Compared to the Cost-Exclusive Multi-Objective Bargaining Methodology (CEMB) model, the Nash equilibrium solution of the CIMB-CP model shows an approximately 0.1% decrease in economic benefits and an approximately 0.3% decrease in pollution discharge. The risk attitudes of the participants have a significant impact on the game outcomes, and decision-makers need to formulate corresponding negotiation strategies based on their own risk preferences.

Suggested Citation

  • Zhipeng Fan & Xiang Fu & Xiaodan Zhao, 2024. "A Bargaining with Negotiation Cost for Water Use and Pollution Conflict Management," Sustainability, MDPI, vol. 17(1), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:119-:d:1554539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eleonora Herrera-Medina & Antoni Riera Font, 2023. "A Multiagent Game Theoretic Simulation of Public Policy Coordination through Collaboration," Sustainability, MDPI, vol. 15(15), pages 1-20, August.
    2. Yang Zheng & Xuefeng Sang & Zhiwu Liu & Siqi Zhang & Pan Liu, 2022. "Water Allocation Management Under Scarcity: a Bankruptcy Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 2891-2912, July.
    3. Yufeng Cheng & Kai Zhu & Quan Zhou & Youssef El Archi & Moaaz Kabil & Bulcsú Remenyik & Lóránt Dénes Dávid, 2023. "Tourism Ecological Efficiency and Sustainable Development in the Hanjiang River Basin: A Super-Efficiency Slacks-Based Measure Model Study," Sustainability, MDPI, vol. 15(7), pages 1-17, April.
    4. Mohammad Nikoo & Reza Kerachian & Hamed Poorsepahy-Samian, 2012. "An Interval Parameter Model for Cooperative Inter-Basin Water Resources Allocation Considering the Water Quality Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3329-3343, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Peng & Kun Lei, 2021. "An Analytical Approach for Initial Allocation of Discharge Permits with Consideration of the Water Environmental Capacity and Industrial Technical Feasibility," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    2. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    3. Qi Wang & Qunli Tang & Yingting Guo, 2024. "Spatial Interaction Spillover Effect of Tourism Eco-Efficiency and Economic Development," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    4. Zhisong Chen & Lingling Pei, 2018. "Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization," Sustainability, MDPI, vol. 10(4), pages 1-28, April.
    5. Lijun Jiao & Ruimin Liu & Linfang Wang & Lin Li & Leiping Cao, 2021. "Evaluating Spatiotemporal Variations in the Impact of Inter-basin Water Transfer Projects in Water-receiving Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5409-5429, December.
    6. Eleonora Herrera-Medina & Antoni Riera Font, 2023. "A Game Theoretic Approach to Collaboration in Policy Coordination," Economies, MDPI, vol. 11(10), pages 1-9, October.
    7. Armaghan Abed-Elmdoust & Reza Kerachian, 2012. "Water Resources Allocation Using a Cooperative Game with Fuzzy Payoffs and Fuzzy Coalitions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3961-3976, October.
    8. Youssef El Archi & Brahim Benbba & Kai Zhu & Zineb El Andaloussi & László Pataki & Lóránt Dénes Dávid, 2023. "Mapping the Nexus between Sustainability and Digitalization in Tourist Destinations: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    9. Liu, Xia, 2023. "Tourism development, environmental regulations, and natural resource management: Evidence from G20 countries," Resources Policy, Elsevier, vol. 86(PA).
    10. Mehran Homayounfar & Sai Lai & Mehdi Zomorodian & Ali Sepaskhah & Arman Ganji, 2014. "Optimal Crop Water Allocation in Case of Drought Occurrence, Imposing Deficit Irrigation with Proportional Cutback Constraint," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3207-3225, August.
    11. Li, Mo & Guo, Ping & Singh, Vijay P., 2016. "An efficient irrigation water allocation model under uncertainty," Agricultural Systems, Elsevier, vol. 144(C), pages 46-57.
    12. Farrukh, Bekpulatov & Younis, Ijaz & Longsheng, Cheng, 2023. "The impact of natural resource management, innovation, and tourism development on environmental sustainability in low-income countries," Resources Policy, Elsevier, vol. 86(PB).
    13. Danyang Di & Qi Shi & Zening Wu & Huiliang Wang, 2023. "Sustainable Management and Environmental Protection for Basin Water Allocation: Differential Game-based Multiobjective Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 1-20, January.
    14. Li, Yinan & Huang, Yuxin, 2023. "Enhancing resources efficiency: Studying economic development in resource-rich regions for long-term sustainability of China," Resources Policy, Elsevier, vol. 86(PA).
    15. Lotfi, Farhad Hosseinzadeh & Saen, Reza Farzipoor & Moghaddas, Zohreh & Vaez-Ghasemi, Mohsen, 2023. "Using an SBM-NDEA model to assess the desirable and undesirable outputs of sustainable supply chain: A case study in wheat industry," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    16. Hossein Mousazadeh & Amir Ghorbani & Hossein Azadi & Farahnaz Akbarzadeh Almani & Hasan Mosazadeh & Kai Zhu & Lóránt Dénes Dávid, 2023. "Sense of Place Attitudes on Quality of Life during the COVID-19 Pandemic: The Case of Iranian Residents in Hungary," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    17. Armaghan Abed-Elmdoust & Reza Kerachian, 2013. "Incorporating Economic and Political Considerations in Inter-Basin Water Allocations: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 859-870, February.
    18. Azizallah Izady & Mohammad Sadegh Khorshidi & Mohammad Reza Nikoo & Ali Al-Maktoumi & Mingjie Chen & Hilal Al-Mamari & Amir H. Gandomi, 2021. "Optimal Water Allocation from Subsurface Dams: A Risk-Based Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4275-4290, September.
    19. Xue-Ying Li & Fang-Fang Li & Jun Qiu, 2017. "A New Evaluation for Water Transfer Optimal Schemes with the Consideration of Reliability, Stability, and Severity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2823-2836, July.
    20. Zhisong Chen & Huimin Wang & Xiangtong Qi, 2013. "Pricing and Water Resource Allocation Scheme for the South-to-North Water Diversion Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1457-1472, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:119-:d:1554539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.