IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0188489.html
   My bibliography  Save this article

Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method

Author

Listed:
  • Mehdi Zomorodian
  • Sai Hin Lai
  • Mehran Homayounfar
  • Shaliza Ibrahim
  • Gareth Pender

Abstract

Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for the reservoirs using the mixed-strategy game and Markov chain methods. The two models were then evaluated against three performance indices: Reliability, Resilience and Vulnerability (R-R-V). The results showed that, while both models were well capable of dealing with conflict resolution over water resources in the Langat River basin, the second model achieved a substantially improved performance through its ability to deal with dynamicity, complexity and uncertainty in the river system.

Suggested Citation

  • Mehdi Zomorodian & Sai Hin Lai & Mehran Homayounfar & Shaliza Ibrahim & Gareth Pender, 2017. "Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-24, December.
  • Handle: RePEc:plo:pone00:0188489
    DOI: 10.1371/journal.pone.0188489
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188489
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188489&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0188489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anandalingam, G. & Apprey, Victor, 1991. "Multi-level programming and conflict resolution," European Journal of Operational Research, Elsevier, vol. 51(2), pages 233-247, March.
    2. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    3. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    4. Unesco-Ihp ., 2015. "Water in the Post-2015 Development Agenda and Sustainable Development Goals," Working Papers id:7841, eSocialSciences.
    5. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    6. Sabah Fayaed & Ahmed El-Shafie & Othman Jaafar, 2013. "Integrated Artificial Neural Network (ANN) and Stochastic Dynamic Programming (SDP) Model for Optimal Release Policy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3679-3696, August.
    7. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    8. Chae, Suchan & Heidhues, Paul, 2004. "A group bargaining solution," Mathematical Social Sciences, Elsevier, vol. 48(1), pages 37-53, July.
    9. Editors The, 2008. "From the Editors," Basic Income Studies, De Gruyter, vol. 3(1), pages 1-1, July.
    10. A. Ganji & D. Khalili & M. Karamouz & K. Ponnambalam & M. Javan, 2008. "A Fuzzy Stochastic Dynamic Nash Game Analysis of Policies for Managing Water Allocation in a Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 51-66, January.
    11. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    12. John C. Harsanyi & Reinhard Selten, 1972. "A Generalized Nash Solution for Two-Person Bargaining Games with Incomplete Information," Management Science, INFORMS, vol. 18(5-Part-2), pages 80-106, January.
    13. Giovanni Sechi & Riccardo Zucca & Paola Zuddas, 2013. "Water Costs Allocation in Complex Systems Using a Cooperative Game Theory Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1781-1796, April.
    14. Mehran Homayounfar & Sai Lai & Mehdi Zomorodian & Ali Sepaskhah & Arman Ganji, 2014. "Optimal Crop Water Allocation in Case of Drought Occurrence, Imposing Deficit Irrigation with Proportional Cutback Constraint," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3207-3225, August.
    15. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    16. Mehran Homayounfar & Arman Ganji & C. Martinez, 2011. "A Novel Solution for Stochastic Dynamic Game of Water Allocation from a Reservoir Using Collocation Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3427-3444, October.
    17. Mehran Homayounfar & Mehdi Zomorodian & Christopher J Martinez & Sai Hin Lai, 2015. "Two Monthly Continuous Dynamic Model Based on Nash Bargaining Theory for Conflict Resolution in Reservoir System," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.
    18. Kaveh Madani & Miguel Mariño, 2009. "System Dynamics Analysis for Managing Iran’s Zayandeh-Rud River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2163-2187, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Caravaggio & Luigi De Cesare & Andrea Di Liddo, 2023. "A Differential Game for Optimal Water Price Management," Games, MDPI, vol. 14(2), pages 1-15, April.
    2. Mengjie Yang & Kai Yang & Yue Che & Shiqiang Lu & Fengyun Sun & Ying Chen & Mengting Li, 2021. "Resolving Transboundary Water Conflicts: Dynamic Evolutionary Analysis Using an Improved GMCR Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3321-3338, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Mojarabi-Kermani & Ehsan Shirangi & Amin Bordbar & Amir Abbas Kaman Bedast & Alireza Masjedi, 2019. "Stochastic Optimal Reservoir Operation Management, Applying Group Conflict Resolution Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2847-2865, June.
    2. Mehran Homayounfar & Sai Lai & Mehdi Zommorodian & Amin Oroji & Arman Ganji & Sara Kaviani, 2015. "Developing a Non-Discrete Dynamic Game Model and Corresponding Monthly Collocation Solution Considering Variability in Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2599-2618, June.
    3. Maryam Ghashghaie & Safar Marofi & Hossein Marofi, 2014. "Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5055-5072, November.
    4. Hadi Tarebari & Amir Hossein Javid & Seyyed Ahmad Mirbagheri & Hedayat Fahmi, 2018. "Multi-Objective Surface Water Resource Management Considering Conflict Resolution and Utility Function Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4487-4509, November.
    5. Eric van Damme & Xu Lang, 2022. "Two-Person Bargaining when the Disagreement Point is Private Information," Papers 2211.06830, arXiv.org, revised Jan 2024.
    6. R. Harrison Wagner, 1979. "On The Unification of Two-Person Bargaining Theory," Journal of Conflict Resolution, Peace Science Society (International), vol. 23(1), pages 71-101, March.
    7. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    8. Laruelle, Annick & Valenciano, Federico, 2007. "Bargaining in committees as an extension of Nash's bargaining theory," Journal of Economic Theory, Elsevier, vol. 132(1), pages 291-305, January.
    9. van Velthoven, Ben & van Winden, Frans, 1985. "Towards a politico-economic theory of social security," European Economic Review, Elsevier, vol. 27(2), pages 263-289, March.
    10. Elges, Carsten, 2016. "Die Preissetzung in Unternehmenskooperationen: Erste spieltheoretische Überlegungen," Arbeitspapiere 162, University of Münster, Institute for Cooperatives.
    11. Binmore, Ken & Osborne, Martin J. & Rubinstein, Ariel, 1992. "Noncooperative models of bargaining," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 7, pages 179-225, Elsevier.
    12. Xu, Zeyu, 2007. "A survey on intra-household models and evidence," MPRA Paper 3763, University Library of Munich, Germany.
    13. Joan Esteban & József Sákovics, 2002. "Endogenous bargaining power," Economics Working Papers 644, Department of Economics and Business, Universitat Pompeu Fabra.
    14. Halkos, George, 1994. "A game-theoretic approach to pollution control problems," MPRA Paper 33259, University Library of Munich, Germany.
    15. Kjell Hausken, 1997. "Game-theoretic and Behavioral Negotiation Theory," Group Decision and Negotiation, Springer, vol. 6(6), pages 511-528, December.
    16. Akira Okada, 2015. "Cooperation and Institution in Games," The Japanese Economic Review, Japanese Economic Association, vol. 66(1), pages 1-32, March.
    17. Spulber, Daniel F., 2016. "Patent licensing and bargaining with innovative complements and substitutes," Research in Economics, Elsevier, vol. 70(4), pages 693-713.
    18. Benoît Lengaigne, 2004. "Nash : changement de programme ?," Revue d'économie politique, Dalloz, vol. 114(5), pages 637-662.
    19. Hom M Pant, 1996. "Endogenous Behaviour of the Tariff Rate in a Political Economy," International Trade 9609001, University Library of Munich, Germany, revised 01 Oct 1996.
    20. Ben Li & Guangming Tan & Gang Chen, 2016. "Generalized Uncooperative Planar Game Theory Model for Water Distribution in Transboundary Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 225-241, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0188489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.