IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v76y2024i5d10.1007_s10463-024-00905-w.html
   My bibliography  Save this article

Penalized estimation for non-identifiable models

Author

Listed:
  • Junichiro Yoshida

    (University of Tokyo)

  • Nakahiro Yoshida

    (University of Tokyo)

Abstract

We derive asymptotic properties of penalized estimators for singular models for which identifiability may break and the true parameter values can lie on the boundary of the parameter space. Selection consistency of the estimators is also validated. The problem that the true values lie on the boundary is solved by our previous results applicable to singular models, besides, penalized estimation and non-ergodic statistics. To overcome non-identifiability, we consider a suitable penalty such as the non-convex Bridge and the adaptive Lasso that stabilize the asymptotic behavior of the estimator and shrink inactive parameters. Then the estimator converges to one of the most parsimonious values among all the true values. The oracle property can also be obtained even if likelihood ratio tests for model selection are labor intensive due to singularity of models. Examples are: a superposition of parametric proportional hazard models and a counting process having intensity with multicollinear covariates.

Suggested Citation

  • Junichiro Yoshida & Nakahiro Yoshida, 2024. "Penalized estimation for non-identifiable models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 765-796, October.
  • Handle: RePEc:spr:aistmt:v:76:y:2024:i:5:d:10.1007_s10463-024-00905-w
    DOI: 10.1007/s10463-024-00905-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-024-00905-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-024-00905-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. J. K. Lindsey, 1995. "Fitting Parametric Counting Processes by Using Log‐Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(2), pages 201-212, June.
    3. Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
    4. Gaïffas, Stéphane & Matulewicz, Gustaw, 2019. "Sparse inference of the drift of a high-dimensional Ornstein–Uhlenbeck process," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 1-20.
    5. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    6. Qiang Xu & Zhimin Qiang & Qiuwen Chen & Kuo Liu & Nan Cao, 2018. "A Superposed Model for the Pipe Failure Assessment of Water Distribution Networks and Uncertainty Analysis: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1713-1723, March.
    7. De Gregorio, Alessandro & Iacus, Stefano M., 2012. "Adaptive Lasso-Type Estimation For Multivariate Diffusion Processes," Econometric Theory, Cambridge University Press, vol. 28(4), pages 838-860, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junichiro Yoshida & Nakahiro Yoshida, 2024. "Quasi-maximum likelihood estimation and penalized estimation under non-standard conditions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 711-763, October.
    2. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    3. Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
    4. Valentin Courgeau & Almut E. D. Veraart, 2022. "Likelihood theory for the graph Ornstein-Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 227-260, July.
    5. Kun Chen & Kung-Sik Chan & Nils Chr. Stenseth, 2014. "Source-Sink Reconstruction Through Regularized Multicomponent Regression Analysis-With Application to Assessing Whether North Sea Cod Larvae Contributed to Local Fjord Cod in Skagerrak," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 560-573, June.
    6. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
    7. Ioane Muni Toke & Nakahiro Yoshida, 2019. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Working Papers hal-01799398, HAL.
    8. Ioane Muni Toke & Nakahiro Yoshida, 2018. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Papers 1805.06682, arXiv.org, revised Aug 2019.
    9. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    10. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    11. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    12. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    13. Jarle Aarstad & Olav Andreas Kvitastein & Stig-Erik Jakobsen, 2019. "What Drives Enterprise Product Innovation? Assessing How Regional, National, And International Inter-Firm Collaboration Complement Or Substitute For R&D Investments," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(05), pages 1-25, June.
    14. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    15. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    16. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    17. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    18. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    19. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    20. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:76:y:2024:i:5:d:10.1007_s10463-024-00905-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.