IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i12d10.1007_s11269-016-1272-3.html
   My bibliography  Save this article

Controlling Floods by Optimization Methods

Author

Listed:
  • Maryam Soleimani-Alyar

    (Azarbaijan Shahid Madani University)

  • Alireza Ghaffari-Hadigheh

    (Azarbaijan Shahid Madani University)

  • Fatemeh Sadeghi

    (Payame Noor University)

Abstract

Floods as natural phenomena exist and will continue to occur. No manmade project can stop a flood from happening, but there are several effective methods to reduce its risk, aftermath and consequences. This paper considers a novel formulation of the network interdiction problem with application on controlling floods. The aim of this work is to identify those arcs prone for flood, and implementing flood-control projects on these arcs, while required budget for deriving all these operations is bounded. the model is tested on a real-world case in Tabriz-Iran, and results are visualized.

Suggested Citation

  • Maryam Soleimani-Alyar & Alireza Ghaffari-Hadigheh & Fatemeh Sadeghi, 2016. "Controlling Floods by Optimization Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4053-4062, September.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:12:d:10.1007_s11269-016-1272-3
    DOI: 10.1007/s11269-016-1272-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1272-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1272-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
    2. Daniel Che & Larry Mays, 2015. "Development of an Optimization/Simulation Model for Real-Time Flood-Control Operation of River-Reservoirs Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3987-4005, September.
    3. Y. Liu & C. Cheng, 2014. "A Solution for Flood Control in Urban Area: Using Street Block and Raft Foundation Space Operation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4985-4998, November.
    4. G. Zucco & G. Tayfur & T. Moramarco, 2015. "Reverse Flood Routing in Natural Channels using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4241-4267, September.
    5. H. Donald Ratliff & G. Thomas Sicilia & S. H. Lubore, 1975. "Finding the n Most Vital Links in Flow Networks," Management Science, INFORMS, vol. 21(5), pages 531-539, January.
    6. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    7. Ajay Malaviya & Chase Rainwater & Thomas Sharkey, 2012. "Multi-period network interdiction problems with applications to city-level drug enforcement," IISE Transactions, Taylor & Francis Journals, vol. 44(5), pages 368-380.
    8. Garg, Manish & Smith, J. Cole, 2008. "Models and algorithms for the design of survivable multicommodity flow networks with general failure scenarios," Omega, Elsevier, vol. 36(6), pages 1057-1071, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Fröhlich & Stefan Ruzika, 2022. "Interdicting facilities in tree networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 95-118, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    2. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    3. Alice Paul & Susan E. Martonosi, 2024. "The all-pairs vitality-maximization (VIMAX) problem," Annals of Operations Research, Springer, vol. 338(2), pages 1019-1048, July.
    4. Tezcan, Barış & Maass, Kayse Lee, 2023. "Human trafficking interdiction with decision dependent success," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    5. Shen, Yeming & Sharkey, Thomas C. & Szymanski, Boleslaw K. & Wallace, William (Al), 2021. "Interdicting interdependent contraband smuggling, money and money laundering networks," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    6. Burcu B. Keskin & Gregory J. Bott & Nickolas K. Freeman, 2021. "Cracking Sex Trafficking: Data Analysis, Pattern Recognition, and Path Prediction," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 1110-1135, April.
    7. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    8. Pengfei Zhang & Neng Fan, 2017. "Analysis of budget for interdiction on multicommodity network flows," Journal of Global Optimization, Springer, vol. 67(3), pages 495-525, March.
    9. Furini, Fabio & Ljubić, Ivana & Martin, Sébastien & San Segundo, Pablo, 2019. "The maximum clique interdiction problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 112-127.
    10. Kosmas, Daniel & Sharkey, Thomas C. & Mitchell, John E. & Maass, Kayse Lee & Martin, Lauren, 2023. "Interdicting restructuring networks with applications in illicit trafficking," European Journal of Operational Research, Elsevier, vol. 308(2), pages 832-851.
    11. Enayaty-Ahangar, Forough & Rainwater, Chase E. & Sharkey, Thomas C., 2019. "A Logic-based Decomposition Approach for Multi-Period Network Interdiction Models," Omega, Elsevier, vol. 87(C), pages 71-85.
    12. Jabarzare, Ziba & Zolfagharinia, Hossein & Najafi, Mehdi, 2020. "Dynamic interdiction networks with applications in illicit supply chains," Omega, Elsevier, vol. 96(C).
    13. Huff, Johnathon D. & Leonard, William B. & Medal, Hugh R., 2022. "The wireless network jamming problem subject to protocol interference using directional antennas and with battery capacity constraints," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    14. Kosanoglu, Fuat & Bier, Vicki M., 2020. "Target-oriented utility for interdiction of transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    15. Harald Held & Raymond Hemmecke & David L. Woodruff, 2005. "A decomposition algorithm applied to planning the interdiction of stochastic networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 321-328, June.
    16. Gabriele Dragotto & Amine Boukhtouta & Andrea Lodi & Mehdi Taobane, 2024. "The critical node game," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-20, July.
    17. Hiba Baroud & Jose E. Ramirez‐Marquez & Kash Barker & Claudio M. Rocco, 2014. "Stochastic Measures of Network Resilience: Applications to Waterway Commodity Flows," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1317-1335, July.
    18. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    19. Laan, Corine M. & van der Mijden, Tom & Barros, Ana Isabel & Boucherie, Richard J. & Monsuur, Herman, 2017. "An interdiction game on a queueing network with multiple intruders," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1069-1080.
    20. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:12:d:10.1007_s11269-016-1272-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.