IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v242y2012icp146-163.html
   My bibliography  Save this article

Numerical modeling on transition of dominant algae in Lake Kitaura, Japan

Author

Listed:
  • Islam, Md. Nazrul
  • Kitazawa, Daisuke
  • Kokuryo, Naoki
  • Tabeta, Shigeru
  • Honma, Takamitsu
  • Komatsu, Nobuyuki

Abstract

Coastal, marine, and freshwater ecosystems are vulnerable to the impact of harmful algal blooms. It is also important to understand how future climatic changes and other environmental conditions may influence the transition of dominant algae, and the frequency and severity of blooms. In this study, the transition of dominant algae in Lake Kitaura was analyzed using a three-dimensional hydrodynamic–ecosystem-coupled model. Lake Kitaura is part of Lake Kasumigaura in Japan, and is connected to Lake Nishiura and Lake Sotonasakaura. Dominant algae have shifted seasonally and annually between 2005 and 2009, between three major algal: Microcystis spp., Planktothrix spp., and Cyclotella spp. Numerical simulation was carried out for the four years of the period 2005–2009. The model reproduced well the transitions of dominant algae in the four years by calibrating ecological parameters. The biomass of Planktothrix spp. suddenly increased in the summer of 2008, and Planktothrix spp. became the dominant species. Longer periods of stratification, lower concentration of dissolved oxygen, and higher concentration of dissolved nitrogen were observed in 2008, while the sudden increase in Planktothrix spp. biomass in 2008 was likely caused by transport of algae into the lake from Lake Nishiura via Wani River.

Suggested Citation

  • Islam, Md. Nazrul & Kitazawa, Daisuke & Kokuryo, Naoki & Tabeta, Shigeru & Honma, Takamitsu & Komatsu, Nobuyuki, 2012. "Numerical modeling on transition of dominant algae in Lake Kitaura, Japan," Ecological Modelling, Elsevier, vol. 242(C), pages 146-163.
  • Handle: RePEc:eee:ecomod:v:242:y:2012:i:c:p:146-163
    DOI: 10.1016/j.ecolmodel.2012.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012002347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    2. Long, Tian-yu & Wu, Lei & Meng, Guo-hu & Guo, Wei-hua, 2011. "Numerical simulation for impacts of hydrodynamic conditions on algae growth in Chongqing Section of Jialing River, China," Ecological Modelling, Elsevier, vol. 222(1), pages 112-119.
    3. Wu, Guozheng & Xu, Zongxue, 2011. "Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake," Ecological Modelling, Elsevier, vol. 222(6), pages 1245-1252.
    4. Taguchi, Koichi & Nakata, Kisaburo, 2009. "Evaluation of biological water purification functions of inland lakes using an aquatic ecosystem model," Ecological Modelling, Elsevier, vol. 220(18), pages 2255-2271.
    5. He, Guojian & Fang, Hongwei & Bai, Sen & Liu, Xiaobo & Chen, Minghong & Bai, Jing, 2011. "Application of a three-dimensional eutrophication model for the Beijing Guanting Reservoir, China," Ecological Modelling, Elsevier, vol. 222(8), pages 1491-1501.
    6. Kerstin S. Treydte & Gerhard H. Schleser & Gerhard Helle & David C. Frank & Matthias Winiger & Gerald H. Haug & Jan Esper, 2006. "The twentieth century was the wettest period in northern Pakistan over the past millennium," Nature, Nature, vol. 440(7088), pages 1179-1182, April.
    7. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shimoda, Yuko & Arhonditsis, George B., 2016. "Phytoplankton functional type modelling: Running before we can walk? A critical evaluation of the current state of knowledge," Ecological Modelling, Elsevier, vol. 320(C), pages 29-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bae, Sunim & Seo, Dongil, 2021. "Changes in algal bloom dynamics in a regulated large river in response to eutrophic status," Ecological Modelling, Elsevier, vol. 454(C).
    2. Zhao, Xiaodong & Zhang, Hongjian & Tao, Xiaolei, 2013. "Predicting the short-time-scale variability of chlorophyll a in the Elbe River using a Lagrangian-based multi-criterion analog model," Ecological Modelling, Elsevier, vol. 250(C), pages 279-286.
    3. Dash, Siddhant & Kalamdhad, Ajay S., 2022. "Systematic bibliographic research on eutrophication-based ecological modelling of aquatic ecosystems through the lens of science mapping," Ecological Modelling, Elsevier, vol. 472(C).
    4. Jiang, Long & Li, Yiping & Zhao, Xu & Tillotson, Martin R. & Wang, Wencai & Zhang, Shuangshuang & Sarpong, Linda & Asmaa, Qhtan & Pan, Baozhu, 2018. "Parameter uncertainty and sensitivity analysis of water quality model in Lake Taihu, China," Ecological Modelling, Elsevier, vol. 375(C), pages 1-12.
    5. Dash, Siddhant & Borah, Smitom Swapna & Kalamdhad, Ajay S., 2020. "Study of the limnology of wetlands through a one-dimensional model for assessing the eutrophication levels induced by various pollution sources," Ecological Modelling, Elsevier, vol. 416(C).
    6. Luo, Xi & Li, Xuyong, 2018. "Using the EFDC model to evaluate the risks of eutrophication in an urban constructed pond from different water supply strategies," Ecological Modelling, Elsevier, vol. 372(C), pages 1-11.
    7. Bae, Soonyim & Seo, Dongil, 2018. "Analysis and modeling of algal blooms in the Nakdong River, Korea," Ecological Modelling, Elsevier, vol. 372(C), pages 53-63.
    8. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    9. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    10. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    11. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    12. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    13. Nicoletta Cannone & M. Guglielmin & P. Convey & M. R. Worland & S. E. Favero Longo, 2016. "Vascular plant changes in extreme environments: effects of multiple drivers," Climatic Change, Springer, vol. 134(4), pages 651-665, February.
    14. Kim, Jaeyoung & Seo, Dongil & Jones, John R., 2022. "Harmful algal bloom dynamics in a tidal river influenced by hydraulic control structures," Ecological Modelling, Elsevier, vol. 467(C).
    15. Yi Tan & Jia Li & Linglei Zhang & Min Chen & Yaowen Zhang & Ruidong An, 2019. "Mechanism Underlying Flow Velocity and Its Corresponding Influence on the Growth of Euglena gracilis , a Dominant Bloom Species in Reservoirs," IJERPH, MDPI, vol. 16(23), pages 1-15, November.
    16. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    17. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    18. Donohue, John G. & Piiroinen, Petri T., 2015. "Mathematical modelling of seasonal migration with applications to climate change," Ecological Modelling, Elsevier, vol. 299(C), pages 79-94.
    19. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    20. Tianfu He & Yun Deng & Youcai Tuo & Yanjing Yang & Naisheng Liang, 2020. "Impact of the Dam Construction on the Downstream Thermal Conditions of the Yangtze River," IJERPH, MDPI, vol. 17(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:242:y:2012:i:c:p:146-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.