IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i13d10.1007_s11269-016-1434-3.html
   My bibliography  Save this article

Risk-Based Design of Flood Control Systems Considering Multiple Dependent Uncertainties

Author

Listed:
  • Masoumeh Behrouz

    (Shahid Beheshti University)

  • Saeed Alimohammadi

    (Shahid Beheshti University)

Abstract

Due to random behavior of flood events and inaccuracies in measurements, design, analysis, and operation of flood control systems are subjected to several uncertainties. An important aspect in developing stochastic models for evaluating and analyzing more than one uncertainty is the dependence or independence of them. In flood control projects, hydrologic, hydraulic, geotechnical, and economic uncertainties are important considerations. In this paper, a stochastic Monte-Carlo simulation – optimization modeling approach is described for risk-based design of flood control levees (as a common structural flood control measure): considering multiple dependent uncertainties. It has been applied to the Leaf River reach in Hattiesburg, Mississippi for testing and evaluation of modeling results. Unlike a deterministic model that yields just one set of values for system dimensions, the stochastic model solution gives a range of values for each of them. One of the major reasons for limited field application of uncertainty analysis is difficulties in performing the modeling results in real world contexts. For closing the gap between theory and reality, design charts are developed in this study. This helps decision makers in identifying design values with desired and accepted risks.

Suggested Citation

  • Masoumeh Behrouz & Saeed Alimohammadi, 2016. "Risk-Based Design of Flood Control Systems Considering Multiple Dependent Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4529-4558, October.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:13:d:10.1007_s11269-016-1434-3
    DOI: 10.1007/s11269-016-1434-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1434-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1434-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Li & G. Huang & S. Nie, 2009. "Water Resources Management and Planning under Uncertainty: an Inexact Multistage Joint-Probabilistic Programming Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2515-2538, September.
    2. Feifei Dong & Yong Liu & Han Su & Zhongyao Liang & Rui Zou & Huaicheng Guo, 2016. "Uncertainty-Based Multi-Objective Decision Making with Hierarchical Reliability Analysis Under Water Resources and Environmental Constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 805-822, January.
    3. Feifei Dong & Yong Liu & Han Su & Zhongyao Liang & Rui Zou & Huaicheng Guo, 2016. "Uncertainty-Based Multi-Objective Decision Making with Hierarchical Reliability Analysis Under Water Resources and Environmental Constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 805-822, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sang Ug Kim & Cheol-Eung Lee, 2021. "Incorporation of Cost-Benefit Analysis Considering Epistemic Uncertainty for Calculating the Optimal Design Flood," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 757-774, January.
    2. Javad Ahadiyan & Farhad Bahmanpouri & Atefeh Adeli & Carlo Gualtieri & Alireza Khoshkonesh, 2022. "Riprap Effect on Hydraulic Fracturing Process of Cohesive and Non-cohesive Protective Levees," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 625-639, January.
    3. Saeed Alimohammadi & Masoume Behrouz, 2021. "Stochastic Design of Flood Control Systems; Uncertainty Propagation and Results Representation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4457-4476, October.
    4. Daniel P. Loucks, 2017. "Managing Water as a Critical Component of a Changing World," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2905-2916, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel P. Loucks, 2017. "Managing Water as a Critical Component of a Changing World," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2905-2916, August.
    2. Paul, Manashi & Negahban-Azar, Masoud & Shirmohammadi, Adel & Montas, Hubert, 2020. "Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Madson B. S. Monte & Adiel T. Almeida-Filho, 2016. "A Multicriteria Approach Using MAUT to Assist the Maintenance of a Water Supply System Located in a Low-Income Community," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3093-3106, July.
    4. Songsong Liu & Lazaros Papageorgiou & Petros Gikas, 2012. "Integrated Management of Non-conventional Water Resources in Anhydrous Islands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 359-375, January.
    5. Sun, J. & Li, Y.P. & Suo, C. & Liu, Y.R., 2019. "Impacts of irrigation efficiency on agricultural water-land nexus system management under multiple uncertainties—A case study in Amu Darya River basin, Central Asia," Agricultural Water Management, Elsevier, vol. 216(C), pages 76-88.
    6. Lin, Xiajing & Huang, Guohe & Zhou, Xiong & Zhai, Yuanyuan, 2023. "An inexact fractional multi-stage programming (IFMSP) method for planning renewable electric power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Yao Ji & Guo Huang & Wei Sun, 2015. "Nonpoint-Source Water Quality Management Under Uncertainty Through an Inexact Double-Sided Chance-Constrained Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3079-3094, July.
    8. Sun, Wei & Huang, Guo H. & Lv, Ying & Li, Gongchen, 2013. "Inexact joint-probabilistic chance-constrained programming with left-hand-side randomness: An application to solid waste management," European Journal of Operational Research, Elsevier, vol. 228(1), pages 217-225.
    9. M. Mohammad Rezapour Tabari, 2015. "Conjunctive Use Management under Uncertainty Conditions in Aquifer Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2967-2986, June.
    10. M. Li & P. Guo & G. Yang & S. Fang, 2014. "IB-ICCMSP: An Integrated Irrigation Water Optimal Allocation and Planning Model Based on Inventory Theory under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 241-260, January.
    11. He, Chaofei & Chen, Fulong & Long, Aihua & Qian, YuXia & Tang, Hao, 2023. "Improving the precision of monthly runoff prediction using the combined non-stationary methods in an oasis irrigation area," Agricultural Water Management, Elsevier, vol. 279(C).
    12. Gong, J.W. & Li, Y.P. & Lv, J. & Huang, G.H. & Suo, C. & Gao, P.P., 2022. "Development of an integrated bi-level model for China’s multi-regional energy system planning under uncertainty," Applied Energy, Elsevier, vol. 308(C).
    13. Ma, Y. & Li, Y.P. & Huang, G.H., 2023. "Planning China’s non-deterministic energy system (2021–2060) to achieve carbon neutrality," Applied Energy, Elsevier, vol. 334(C).
    14. Fang-Fang Li & Han Cao & Chun-Feng Hao & Jun Qiu, 2021. "Daily Streamflow Forecasting Based on Flow Pattern Recognition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4601-4620, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:13:d:10.1007_s11269-016-1434-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.