IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i9p3079-3094.html
   My bibliography  Save this article

Nonpoint-Source Water Quality Management Under Uncertainty Through an Inexact Double-Sided Chance-Constrained Model

Author

Listed:
  • Yao Ji
  • Guo Huang
  • Wei Sun

Abstract

This study proposed an inexact double-hand-side chance-constrained programming (IDCCP) method for nonpoint-source water quality management within an agricultural system. The IDCCP model can express interval parameters and double-hand-side random variables (e.g. nitrogen requirement of crop and nitrogen content of manure) simultaneously. To handle the double-sided random variables, a linear form of sufficient conditions for the IDCCP was deduced and proved. The performance of IDCCP was testified in the water quality management study case at three individual probabilities (θ i = 0.1, 0.05 and 0.01), and compared with the corresponding ILP model. The results demonstrated that, the net benefit of the agriculture system decrease with a decreasing violating probability (θ i ), an increasing satisfaction of constraint (1-θ i ), or a lower risk of the system. Although it is the first application of the IDCCP method to nonpoint-resource water quality management, the IDCCP could also be applied to other environmental issues under such uncertainties. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Yao Ji & Guo Huang & Wei Sun, 2015. "Nonpoint-Source Water Quality Management Under Uncertainty Through an Inexact Double-Sided Chance-Constrained Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3079-3094, July.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:9:p:3079-3094
    DOI: 10.1007/s11269-015-0983-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-0983-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-0983-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Graveline & B. Aunay & J. Fusillier & J. Rinaudo, 2014. "Coping with Urban & Agriculture Water Demand Uncertainty in Water Management Plan Design: the Interest of Participatory Scenario Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3075-3093, August.
    2. Wenyong Wu & Suchuang Di & Qianheng Chen & Shengli Yang & Xingyao Pan & Honglu Liu, 2013. "The Compensation Mechanism and Water Quality Impacts of Agriculture-Urban Water Transfers: A Case Study in China’s Chaobai Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 187-197, January.
    3. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    4. Honghai Qi & Mustafa Altinakar, 2011. "Vegetation Buffer Strips Design Using an Optimization Approach for Non-Point Source Pollutant Control of an Agricultural Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 565-578, January.
    5. Julien, Benoit, 1994. "Water quality management with imprecise information," European Journal of Operational Research, Elsevier, vol. 76(1), pages 15-27, July.
    6. Huang, G. H., 1998. "A hybrid inexact-stochastic water management model," European Journal of Operational Research, Elsevier, vol. 107(1), pages 137-158, May.
    7. Y. Li & G. Huang & S. Nie, 2009. "Water Resources Management and Planning under Uncertainty: an Inexact Multistage Joint-Probabilistic Programming Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2515-2538, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Wei & Huang, Guo H. & Lv, Ying & Li, Gongchen, 2013. "Inexact joint-probabilistic chance-constrained programming with left-hand-side randomness: An application to solid waste management," European Journal of Operational Research, Elsevier, vol. 228(1), pages 217-225.
    2. M. Li & P. Guo & G. Yang & S. Fang, 2014. "IB-ICCMSP: An Integrated Irrigation Water Optimal Allocation and Planning Model Based on Inventory Theory under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 241-260, January.
    3. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    4. Li, Y.P. & Huang, G.H. & Nie, S.L. & Chen, X., 2011. "A robust modeling approach for regional water management under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 98(10), pages 1577-1588, August.
    5. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    6. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    7. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    8. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    9. Carlos Gómez & C. Pérez-Blanco, 2014. "Simple Myths and Basic Maths About Greening Irrigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4035-4044, September.
    10. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    12. Yong Liu & Yajuan Yu & Huaicheng Guo & Pingjian Yang, 2009. "Optimal Land-Use Management for Surface Source Water Protection Under Uncertainty: A Case Study of Songhuaba Watershed (Southwestern China)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2069-2083, August.
    13. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    14. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    15. Wang, S. & Huang, G.H., 2015. "A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: An application to water resources management," European Journal of Operational Research, Elsevier, vol. 240(2), pages 572-581.
    16. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    17. Li, Y.P. & Huang, G.H. & Zhang, N. & Nie, S.L., 2011. "An inexact-stochastic with recourse model for developing regional economic-ecological sustainability under uncertainty," Ecological Modelling, Elsevier, vol. 222(2), pages 370-379.
    18. Cong Dong & Gordon Huang & Guanhui Cheng & Shan Zhao, 2018. "Water Resources and Farmland Management in the Songhua River Watershed under Interval and Fuzzy Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4177-4200, October.
    19. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    20. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:9:p:3079-3094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.