IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v279y2023ics0378377423000264.html
   My bibliography  Save this article

Improving the precision of monthly runoff prediction using the combined non-stationary methods in an oasis irrigation area

Author

Listed:
  • He, Chaofei
  • Chen, Fulong
  • Long, Aihua
  • Qian, YuXia
  • Tang, Hao

Abstract

The optimized agricultural water schedule and management, especially in the large irrigation district along the river basins, were closely related to the spatial and temporal runoff variations. However, the impacts of climate change and human activities leads to non-linear and non-stationary monthly runoffs. Under this condition, effectively capturing the variation of the runoff time series and improving the accuracy of the prediction model are of vital importance. However, some existing monthly data-driven prediction studies mainly focus on the model structure and calculation load, ignoring the influence of each frequency component of runoff and the fluctuation of runoff series caused by meteorological factors, which may not effectively capture the potential change process. In this paper, a novel method (CEEMD-MPE-EMD-GRU) for the non-stationary monthly runoff prediction was proposed. It fully took advantages of the complementary ensemble empirical mode decomposition (CEEMD), multi-scale permutation entropy (MPE), empirical mode decomposition (EMD) and gated recurrent unit (GRU). The combined model in general is a data-driven model, and compared with the traditional mechanism model, its most notable advantage is that it successfully overcomes the redundant information of the prediction model. In addition, atmospheric input factor analysis is added on the basis of fully decomposing and identifying non-stationary pseudo-components. The hydrological runoff data (1956–2014) obtained from the Manas River locating at Xinjiang, China were used for prediction. The results indicated that the new CEEMD-MPE-EMD-GRU model reached higher accuracy, as its Nash-Sutcliffe efficiency coefficient (0.960) was significantly larger than those of the GRU model (0.813) and the CEEMD-GRU model (0.889). Meanwhile, the root mean square error and the absolute relative error of the CEEMD-MPE-EMD-GRU model decreased to 0.279 and 0.195, respectively. The new runoff prediction model established in this paper would provide more precise evaluation of the monthly runoff prediction and better guidelines for high-efficiency agricultural water scheduling in the irrigation district.

Suggested Citation

  • He, Chaofei & Chen, Fulong & Long, Aihua & Qian, YuXia & Tang, Hao, 2023. "Improving the precision of monthly runoff prediction using the combined non-stationary methods in an oasis irrigation area," Agricultural Water Management, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000264
    DOI: 10.1016/j.agwat.2023.108161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinxin He & Jungang Luo & Ganggang Zuo & Jiancang Xie, 2019. "Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1571-1590, March.
    2. Huaping Huang & Zhongmin Liang & Binquan Li & Dong Wang & Yiming Hu & Yujie Li, 2019. "Combination of Multiple Data-Driven Models for Long-Term Monthly Runoff Predictions Based on Bayesian Model Averaging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3321-3338, July.
    3. Y. Li & G. Huang & S. Nie, 2009. "Water Resources Management and Planning under Uncertainty: an Inexact Multistage Joint-Probabilistic Programming Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2515-2538, September.
    4. Wang, Shengbo & Cao, Yanyi & Huang, Tingwen & Wen, Shiping, 2019. "Passivity and passification of memristive neural networks with leakage term and time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 294-310.
    5. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    6. Zhennan Liu & Qiongfang Li & Jingnan Zhou & Weiguo Jiao & Xiaoyu Wang, 2021. "Runoff Prediction Using a Novel Hybrid ANFIS Model Based on Variable Screening," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2921-2940, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farshid Rezaei & Rezvane Ghorbani & Najmeh Mahjouri, 2022. "Improving Daily and Monthly River Discharge Forecasts using Geostatistical Ensemble Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5063-5089, October.
    2. Jinyu Meng & Zengchuan Dong & Yiqing Shao & Shengnan Zhu & Shujun Wu, 2022. "Monthly Runoff Forecasting Based on Interval Sliding Window and Ensemble Learning," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    3. Wei Li & Xiaosheng Wang & Shujiang Pang & Haiying Guo, 2022. "A Runoff Prediction Model Based on Nonhomogeneous Markov Chain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1431-1442, March.
    4. Fang-Fang Li & Han Cao & Chun-Feng Hao & Jun Qiu, 2021. "Daily Streamflow Forecasting Based on Flow Pattern Recognition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4601-4620, October.
    5. Songsong Liu & Lazaros Papageorgiou & Petros Gikas, 2012. "Integrated Management of Non-conventional Water Resources in Anhydrous Islands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 359-375, January.
    6. Sun, J. & Li, Y.P. & Suo, C. & Liu, Y.R., 2019. "Impacts of irrigation efficiency on agricultural water-land nexus system management under multiple uncertainties—A case study in Amu Darya River basin, Central Asia," Agricultural Water Management, Elsevier, vol. 216(C), pages 76-88.
    7. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    8. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    9. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    10. Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
    11. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    12. Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
    13. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Lin Qiu & Can-can Liu, 2017. "The Annual Maximum Flood Peak Discharge Forecasting Using Hermite Projection Pursuit Regression with SSO and LS Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 461-477, January.
    14. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Wen, Shiping, 2020. "Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    15. Zhuo Jia & Yuhao Peng & Qin Li & Rui Xiao & Xue Chen & Zhijin Cheng, 2024. "Monthly Runoff forecasting using A Climate‑driven Model Based on Two-stage Decomposition and Optimized Support Vector Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5701-5722, November.
    16. Lin, Xiajing & Huang, Guohe & Zhou, Xiong & Zhai, Yuanyuan, 2023. "An inexact fractional multi-stage programming (IFMSP) method for planning renewable electric power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    17. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    18. Liangxu Liu & Xueyong Zhao & Qinglan Meng & He Zhao & Xiaoqian Lu & Junkai Gao & Xueli Chang, 2017. "Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    19. Yani Lian & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "Climate-driven Model Based on Long Short-Term Memory and Bayesian Optimization for Multi-day-ahead Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 21-37, January.
    20. Ali Danandeh Mehr & Vahid Nourani, 2018. "Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2665-2679, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.