IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i2d10.1007_s11269-021-02764-z.html
   My bibliography  Save this article

Incorporation of Cost-Benefit Analysis Considering Epistemic Uncertainty for Calculating the Optimal Design Flood

Author

Listed:
  • Sang Ug Kim

    (Kangwon National University)

  • Cheol-Eung Lee

    (Kangwon National University)

Abstract

Design flood via flood frequency analysis provides basic information for designing hydraulic structures. Quantification of uncertainty in flood frequency analysis has become an important issue during the past three decades. However, few studies have considered practical procedures for selecting a single design flood in the uncertainty range. Cost-benefit analysis can be incorporated to select a single design flood by calculating the optimal value in the total expected cost function. In particular, in this study, the relationship between conventional flood frequency analysis and cost-benefit analysis is addressed. Additionally, the parameter uncertainty is quantified by the Metropolis-Hastings algorithm to find the optimal design floods considering parameter uncertainty. The annual maximum (AM) series and partial duration (PD) series were used to identify the effect of various types of data. The optimal design floods obtained by the cost-benefit analysis considering parameter uncertainty were systematically larger than the design flood obtained by the conventional flood frequency analysis. Regarding the types of data, the generalized Pareto distribution (GPD) had the largest values in all return periods, while the Gumbel distribution had the smallest values in all cases.

Suggested Citation

  • Sang Ug Kim & Cheol-Eung Lee, 2021. "Incorporation of Cost-Benefit Analysis Considering Epistemic Uncertainty for Calculating the Optimal Design Flood," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 757-774, January.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:2:d:10.1007_s11269-021-02764-z
    DOI: 10.1007/s11269-021-02764-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02764-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02764-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Nadarajah & J. Shiau, 2005. "Analysis of Extreme Flood Events for the Pachang River, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(4), pages 363-374, August.
    2. L. Raso & S. V. Weijs & M. Werner, 2018. "Balancing Costs and Benefits in Selecting New Information: Efficient Monitoring Using Deterministic Hydro-economic Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 339-357, January.
    3. Dominik Paprotny & Michalis I. Vousdoukas & Oswaldo Morales-Nápoles & Sebastiaan N. Jonkman & Luc Feyen, 2020. "Pan-European hydrodynamic models and their ability to identify compound floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 933-957, April.
    4. Saralees Nadarajah & M. Ali, 2008. "Pareto Random Variables for Hydrological Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1381-1393, October.
    5. C. Dieperink & D. L. T Hegger & M. H. N. Bakker & Z. W. Kundzewicz & C. Green & P. P. J. Driessen, 2016. "Recurrent Governance Challenges in the Implementation and Alignment of Flood Risk Management Strategies: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4467-4481, October.
    6. Aili Xie & Pan Liu & Shenglian Guo & Xiaoqi Zhang & Hao Jiang & Guang Yang, 2018. "Optimal Design of Seasonal Flood Limited Water Levels by Jointing Operation of the Reservoir and Floodplains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 179-193, January.
    7. Masoumeh Behrouz & Saeed Alimohammadi, 2016. "Risk-Based Design of Flood Control Systems Considering Multiple Dependent Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4529-4558, October.
    8. Wentao Xu & Cong Jiang & Lei Yan & Lingqi Li & Shuonan Liu, 2018. "An Adaptive Metropolis-Hastings Optimization Algorithm of Bayesian Estimation in Non-Stationary Flood Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1343-1366, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leandro José Isensee & Adilson Pinheiro & Daniel Henrique Marco Detzel, 2021. "Dam Hydrological Risk and the Design Flood Under Non-stationary Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1499-1512, March.
    2. Saeed Alimohammadi & Masoume Behrouz, 2021. "Stochastic Design of Flood Control Systems; Uncertainty Propagation and Results Representation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4457-4476, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    2. Xiaoying Li & Yan Zhang & Zechun Tong & Guo-Yue Niu, 2022. "Reservoir Flood Season Segmentation and Risk–benefit Cooperative Decision of Staged Flood Limited Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3463-3479, August.
    3. Walid Abu-Dayyeh & Aissa Assrhani & Kamarulzaman Ibrahim, 2013. "Estimation of the shape and scale parameters of Pareto distribution using ranked set sampling," Statistical Papers, Springer, vol. 54(1), pages 207-225, February.
    4. Christopher S. Withers & Saralees Nadarajah, 2016. "M-Estimators for Regression with Changing Scale," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 238-286, November.
    5. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    6. Christopher S. Withers & Saralees Nadarajah, 2013. "Expansions for the Distribution of the Maximum from Distributions with a Power Tail when a Trend is Present," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 525-546, September.
    7. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    8. Duc Hai Nguyen & Seon-Ho Kim & Hyun-Han Kwon & Deg-Hyo Bae, 2021. "Uncertainty Quantification of Water Level Predictions from Radar‐based Areal Rainfall Using an Adaptive MCMC Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2197-2213, May.
    9. A. C. Cebrián & J. Abaurrea & J. Asín & E. Segarra, 2019. "Dynamic Regression Model for Hourly River Level Forecasting Under Risk Situations: an Application to the Ebro River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 523-537, January.
    10. Fatemeh Barzegari Banadkooki & Jan Adamowski & Vijay P. Singh & Mohammad Ehteram & Hojat Karami & Sayed Farhad Mousavi & Saeed Farzin & Ahmed EL-Shafie, 2020. "Crow Algorithm for Irrigation Management: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1021-1045, February.
    11. Wangxue Chen & Rui Yang & Dongsen Yao & Chunxian Long, 2021. "Pareto parameters estimation using moving extremes ranked set sampling," Statistical Papers, Springer, vol. 62(3), pages 1195-1211, June.
    12. Li Li & Eun-Sung Chung & Kyung Soo Jun, 2018. "Robust Parameter Set Selection for a Hydrodynamic Model Based on Multi-Site Calibration Using Multi-Objective Optimization and Minimax Regret Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3979-3995, September.
    13. Ferreira, Helena & Ferreira, Marta, 2015. "Extremes of scale mixtures of multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 82-99.
    14. Song-Yue Yang & Bing-Chen Jhong & You-Da Jhong & Tsung-Tang Tsai & Chang-Shian Chen, 2023. "Long short-term memory integrating moving average method for flood inundation depth forecasting based on observed data in urban area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2339-2361, March.
    15. Hsiao-Ping Wei & Yuan-Fong Su & Chao-Tzuen Cheng & Keh-Chia Yeh, 2020. "Levee Overtopping Risk Assessment under Climate Change Scenario in Kao-Ping River, Taiwan," Sustainability, MDPI, vol. 12(11), pages 1-12, June.
    16. Ali İ. Genç, 2021. "Products, Sums and Quotients of Upper Truncated Pareto Random Variables with an Application in Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 369-383, January.
    17. Wenshu Qian & Wangxue Chen & Xiaofang He, 2021. "Parameter estimation for the Pareto distribution based on ranked set sampling," Statistical Papers, Springer, vol. 62(1), pages 395-417, February.
    18. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang, 2022. "Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China," Land, MDPI, vol. 11(8), pages 1-24, July.
    19. Jieyu Li & Ping-an Zhong & Feilin Zhu & Juan Chen & Minzhi Yang & Jisi Fu & Weifeng Liu, 2020. "Reduction of the Criteria System for Identifying Effective Reservoirs in the Joint Operation of a Flood Control System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 71-85, January.
    20. Lei Yan & Lihua Xiong & Qinghua Luan & Cong Jiang & Kunxia Yu & Chong-Yu Xu, 2020. "On the Applicability of the Expected Waiting Time Method in Nonstationary Flood Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2585-2601, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:2:d:10.1007_s11269-021-02764-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.