IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i8p2967-2986.html
   My bibliography  Save this article

Conjunctive Use Management under Uncertainty Conditions in Aquifer Parameters

Author

Listed:
  • M. Mohammad Rezapour Tabari

Abstract

Given that conjunctive use operation policies play a vital role in the sustainability of water resources and their optimal allocation, applying realistic conditions of water resource system in management models lead operating rules to be close to natural conditions. In this study, the combined fuzzy logic and direct search optimization technique has been used to account for the uncertainty associated with parameters affecting groundwater table level fluctuations. The mentioned effective parameters include specific yields and inflow recharge and outflow discharge from the aquifer which are often observed trivially or transitorily in management models. Using the hydrogeological area information and piezometric data, the fluctuation range of each parameter is specified to determine the membership function. Applying fuzzy cuts (numbers between zero and one) on each effective parameter and corresponding interval production, random search optimization model is implemented to find the minimum and maximum value of the groundwater table level fluctuations. The fuzzy number of the output parameter can be determined through replicating the above steps. To compare the results of applying uncertainty in providing optimal allocation values, a conjunctive use model was formulated with the aim of minimizing the shortage rate in supplying water demands given the water resources constraints. In this model, the area under study is divided into zones and given the priorities for each zone and considering the importance of the consumption and source types, optimal allocations are determined. The results of the proposed model show that if real conditions are considered in conjunctive use model, the reliability of system will be capable in handling the water supply demands. The results of the proposed model also indicate that it present reliable allocations compared to the static conventional models and that it performs more desirably and practically in allocating supplies to water demands as it duly includes the opinions of the decision-makers involved. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • M. Mohammad Rezapour Tabari, 2015. "Conjunctive Use Management under Uncertainty Conditions in Aquifer Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2967-2986, June.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:8:p:2967-2986
    DOI: 10.1007/s11269-015-0981-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-0981-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-0981-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjay Raul & Sudhindra Panda, 2013. "Simulation-Optimization Modeling for Conjunctive Use Management under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1323-1350, March.
    2. Y. Li & G. Huang & S. Nie, 2009. "Water Resources Management and Planning under Uncertainty: an Inexact Multistage Joint-Probabilistic Programming Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2515-2538, September.
    3. M. Tabari & Jaber Soltani, 2013. "Multi-Objective Optimal Model for Conjunctive Use Management Using SGAs and NSGA-II Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 37-53, January.
    4. Chao-Chung Yang & Liang-Cheng Chang & Chang-Shian Chen & Ming-Sheng Yeh, 2009. "Multi-objective Planning for Conjunctive Use of Surface and Subsurface Water Using Genetic Algorithm and Dynamics Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 417-437, February.
    5. Aliasghar Montazar & H. Riazi & S. Behbahani, 2010. "Conjunctive Water Use Planning in an Irrigation Command Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 577-596, February.
    6. Dattatray Regulwar & Jyotiba Gurav, 2011. "Irrigation Planning Under Uncertainty—A Multi Objective Fuzzy Linear Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1387-1416, March.
    7. Hamid Safavi & Fatemeh Darzi & Miguel Mariño, 2010. "Simulation-Optimization Modeling of Conjunctive Use of Surface Water and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1965-1988, August.
    8. A. Bobba, 2012. "Ground Water-Surface Water Interface (GWSWI) Modeling: Recent Advances and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4105-4131, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mona Nemati & Mahmoud Mohammad Rezapour Tabari & Seyed Abbas Hosseini & Saman Javadi, 2021. "A Novel Approach Using Hybrid Fuzzy Vertex Method-MATLAB Framework Based on GMS Model for Quantifying Predictive Uncertainty Associated with Groundwater Flow and Transport Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4189-4215, September.
    2. Mohammad Ebrahim Banihabib & Mahmoud Mohammad Rezapour Tabari & Mohsen Mohammad Rezapour Tabari, 2019. "Development of a Fuzzy Multi-Objective Heuristic Model for Optimum Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3673-3689, September.
    3. Srishti Gaur & Arnab Bandyopadhyay & Rajendra Singh, 2021. "From Changing Environment to Changing Extremes: Exploring the Future Streamflow and Associated Uncertainties Through Integrated Modelling System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1889-1911, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D.-A. An-Vo & S. Mushtaq & T. Nguyen-Ky & J. Bundschuh & T. Tran-Cong & T. Maraseni & K. Reardon-Smith, 2015. "Nonlinear Optimisation Using Production Functions to Estimate Economic Benefit of Conjunctive Water Use for Multicrop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2153-2170, May.
    2. Sanjay Raul & Sudhindra Panda, 2013. "Simulation-Optimization Modeling for Conjunctive Use Management under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1323-1350, March.
    3. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    4. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    5. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Elahe Fallah-Mehdipour & Omid Bozorg Haddad & Saeed Alimohammadi & Hugo Loáiciga, 2015. "Development of Real-Time Conjunctive Use Operation Rules for Aquifer-Reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1887-1906, April.
    7. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    8. H. Delottier & A. Pryet & A. Dupuy, 2017. "Why Should Practitioners be Concerned about Predictive Uncertainty of Groundwater Management Models?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 61-73, January.
    9. Fateme Heydari & Bahram Saghafian & Majid Delavar, 2016. "Coupled Quantity-Quality Simulation-Optimization Model for Conjunctive Surface-Groundwater Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4381-4397, September.
    10. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    11. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
    12. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    13. Singh, Ajay & Panda, Sudhindra Nath, 2012. "Development and application of an optimization model for the maximization of net agricultural return," Agricultural Water Management, Elsevier, vol. 115(C), pages 267-275.
    14. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    15. Mehrabi, Ahmad & Heidarpour, Manouchehr & Safavi, Hamid R. & Rezaei, Farshad, 2021. "Assessment of the optimized scenarios for economic-environmental conjunctive water use utilizing gravitational search algorithm," Agricultural Water Management, Elsevier, vol. 246(C).
    16. Safavi, Hamid R. & Enteshari, Sajad, 2016. "Conjunctive use of surface and ground water resources using the ant system optimization," Agricultural Water Management, Elsevier, vol. 173(C), pages 23-34.
    17. Shu Chen & Dongguo Shao & Xudong Li & Caixiu Lei, 2016. "Simulation-Optimization Modeling of Conjunctive Operation of Reservoirs and Ponds for Irrigation of Multiple Crops Using an Improved Artificial Bee Colony Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2887-2905, July.
    18. Chen, Shu & Shao, Dongguo & Gu, Wenquan & Xu, Baoli & Li, Haoxin & Fang, Longzhang, 2017. "An interval multistage water allocation model for crop different growth stages under inputs uncertainty," Agricultural Water Management, Elsevier, vol. 186(C), pages 86-97.
    19. Aliasghar Montazar, 2013. "A decision tool for optimal irrigated crop planning and water resources sustainability," Journal of Global Optimization, Springer, vol. 55(3), pages 641-654, March.
    20. M. Rezapour Tabari & Abdollah Yazdi, 2014. "Conjunctive Use of Surface and Groundwater with Inter-Basin Transfer Approach: Case Study Piranshahr," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1887-1906, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:8:p:2967-2986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.