IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i11d10.1007_s11269-016-1400-0.html
   My bibliography  Save this article

An Approximately Semi-Analytical Model for Describing Surface Runoff of Rainwater Over Sloped Land

Author

Listed:
  • Ting Yang

    (Xi’an University of Technology
    University of California)

  • Quanjiu Wang

    (Xi’an University of Technology
    Northwest Agriculture&Forestry University)

  • Lijun Su

    (Xi’an University of Technology)

  • Laosheng Wu

    (University of California)

  • Guangxu Zhao

    (Xi’an University of Technology)

  • Yanli Liu

    (Xi’an University of Technology)

  • Pengyu Zhang

    (Xi’an University of Technology)

Abstract

Accurate prediction of surface runoff is critical to watershed management. In this research a semi-analytical model was adopted to solve the kinematic wave equation based on the assumption that the rate of overland-flow depth change is proportional to the rainfall excess. Simulations were compared with the results from laboratory experiments at various rain intensities. Parameters of infiltration rate and Manning’s roughness coefficient were determined. The accuracy of the semi-analytical model was evaluated by numerical simulations. The predicted outflow rates from the numerical simulations agreed well with the observed data. Further, our study indicated that the ratio (c) of the overland-flow depth change to the rainfall excess was a power function of the rain intensity. The depth and velocity of water flow at any time and distance could be calculated with the semi-analytical model. Hydraulic parameters including Reynolds number, Froude number, hydraulic shear stress, stream power and Darcy-Weisbach friction factor characterizing the dynamic features of overland flow of rainwater were calculated based on calculated overland-flow depth and velocity. The proposed analytical method can provide a new way to predict infiltration and runoff over sloped land.

Suggested Citation

  • Ting Yang & Quanjiu Wang & Lijun Su & Laosheng Wu & Guangxu Zhao & Yanli Liu & Pengyu Zhang, 2016. "An Approximately Semi-Analytical Model for Describing Surface Runoff of Rainwater Over Sloped Land," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3935-3948, September.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1400-0
    DOI: 10.1007/s11269-016-1400-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1400-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1400-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dave Deckers & Martijn Booij & Tom Rientjes & Maarten Krol, 2010. "Catchment Variability and Parameter Estimation in Multi-Objective Regionalisation of a Rainfall–Runoff Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3961-3985, November.
    2. Ching-Nuo Chen & Chih-Heng Tsai & Chang-Tai Tsai, 2011. "Simulation of Runoff and Suspended Sediment Transport Rate in a Basin with Multiple Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 793-816, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting Yang & Lijun Su & Laosheng Wu & Quanjiu Wang, 2020. "Overland Flow along Stone Covered Slope Land Simulated with Semi-Analytical and Numerical Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 51-69, January.
    2. Julio Cesar Neves Santos & Eunice Maia Andrade & Pedro Henrique Augusto Medeiros & Maria João Simas Guerreiro & Helba Araújo Queiroz Palácio, 2017. "Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 173-185, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianzhong Zhou & Shuo Ouyang & Xuemin Wang & Lei Ye & Hao Wang, 2014. "Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 767-783, February.
    2. O. Belmar & J. Velasco & F. Martínez-Capel & M. Peredo-Parada & T. Snelder, 2012. "Do Environmental Stream Classifications Support Flow Assessments in Mediterranean Basins?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3803-3817, October.
    3. Pao-Shan Yu & Tao-Chang Yang & Chen-Min Kuo & Yi-Tai Wang, 2014. "A Stochastic Approach for Seasonal Water-Shortage Probability Forecasting Based on Seasonal Weather Outlook," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3905-3920, September.
    4. Sawano, Shinji & Hotta, Norifumi & Tanaka, Nobuaki & Tsuboyama, Yoshio & Suzuki, Masakazu, 2015. "Development of a simple forest evapotranspiration model using a process-oriented model as a reference to parameterize data from a wide range of environmental conditions," Ecological Modelling, Elsevier, vol. 309, pages 93-109.
    5. Ye Tian & Yue-Ping Xu & Xu-Jie Zhang, 2013. "Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2871-2888, June.
    6. Minglong Dai & Jianzhong Zhou & Xiang Liao, 2016. "Research on Combination Forecast Mode of Conceptual Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4483-4499, October.
    7. Koppuravuri Ramabrahmam & Venkata Reddy Keesara & Raghavan Srinivasan & Deva Pratap & Venkataramana Sridhar, 2021. "Flow Simulation and Storage Assessment in an Ungauged Irrigation Tank Cascade System Using the SWAT Model," Sustainability, MDPI, vol. 13(23), pages 1-18, November.
    8. Vaibhav Garg & V. Jothiprakash, 2012. "Sediment Yield Assessment of a Large Basin using PSIAC Approach in GIS Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 799-840, February.
    9. Juliana Mendes & Rodrigo Maia, 2016. "Hydrologic Modelling Calibration for Operational Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5671-5685, December.
    10. Jun Guo & Jianzhong Zhou & Qiang Zou & Yi Liu & Lixiang Song, 2013. "A Novel Multi-Objective Shuffled Complex Differential Evolution Algorithm with Application to Hydrological Model Parameter Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2923-2946, June.
    11. Wilfredo Caballero & Ataur Rahman, 2014. "Application of Monte Carlo simulation technique for flood estimation for two catchments in New South Wales, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1475-1488, December.
    12. H. S. Kim, 2016. "Potential Improvement of the Parameter Identifiability in Ungauged Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3207-3228, July.
    13. J. Vicente-Guillén & E. Ayuga-Telléz & D. Otero & J. Chávez & F. Ayuga & A. García, 2012. "Performance of a Monthly Streamflow Prediction Model for Ungauged Watersheds in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3767-3784, October.
    14. H. Kim, 2014. "Adequacy of a Multi-objective Regional Calibration Method Incorporating a Sequential Regionalisation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5507-5526, December.
    15. Wei Zhang & Yan Zhu & Xuejun Wang, 2014. "A Modeling Method to Evaluate the Management Strategy of Urban Storm Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 541-552, January.
    16. Walter Chen & Kieu Anh Nguyen & Yu-Chieh Huang, 2023. "Soil Erosion in Taiwan," Agriculture, MDPI, vol. 13(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1400-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.