IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4568-d791674.html
   My bibliography  Save this article

Research on Marine Ecological Carrying Capacity of Ningbo City in China Based on System Dynamics

Author

Listed:
  • Haier Ying

    (College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China)

  • Suya Chen

    (College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China)

  • Yuqin Mao

    (College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China)

Abstract

In order to quantitatively analyze the comprehensive impact of population growth, economic development, and environmental pollution on marine ecology, a system dynamics (SD) model was constructed to evaluate and predict the marine ecological carrying capacity (MECC) of Ningbo city, China. Population, gross domestic product, chemical oxygen demand, and marine economic development were selected as the influencing factors of Ningbo MECC. Using the established SD model, the current situation and development forecast of Ningbo MECC from 2012 to 2023 were simulated and analyzed. A consistency test showed that the difference between the simulated value and historical data was within 5%, and the data were consistent in reflecting the evolution of the actual system with high credibility and effective simulation. The results indicated that the model could objectively reflect the relationship between marine ecology, economic development, and population growth. According to the prediction by the SD model, the MECC index would slightly rise year by year under the current development mode, while it would be still below 1.0 by 2023. By reducing the economic growth rate and increasing the pollutant treatment rate, the goal of improving MECC could be effectively achieved.

Suggested Citation

  • Haier Ying & Suya Chen & Yuqin Mao, 2022. "Research on Marine Ecological Carrying Capacity of Ningbo City in China Based on System Dynamics," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4568-:d:791674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li Gong & Chunling Jin, 2009. "Fuzzy Comprehensive Evaluation for Carrying Capacity of Regional Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2505-2513, September.
    2. Xiao-meng Song & Fan-zhe Kong & Che-sheng Zhan, 2011. "Assessment of Water Resources Carrying Capacity in Tianjin City of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 857-873, February.
    3. Zhang, Z. & Lu, W.X. & Zhao, Y. & Song, W.B., 2014. "Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area of Jilin Province in China based on system dynamics and analytic hierarchy process," Ecological Modelling, Elsevier, vol. 275(C), pages 9-21.
    4. Q. Tan & G. Huang & Y. Cai, 2013. "Multi-Source Multi-Sector Sustainable Water Supply Under Multiple Uncertainties: An Inexact Fuzzy-Stochastic Quadratic Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 451-473, January.
    5. Graymore, M.L.M. & Sipe, Neil G. & Rickson, Roy E., 2010. "Sustaining Human Carrying Capacity: A tool for regional sustainability assessment," Ecological Economics, Elsevier, vol. 69(3), pages 459-468, January.
    6. Jing Guo & Jun Ren & Xiaotao Huang & Guifang He & Yan Shi & Huakun Zhou, 2020. "The Dynamic Evolution of the Ecological Footprint and Ecological Capacity of Qinghai Province," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohu Ci & Liping Zhang & Tongxiang Wang & Yi Xiao & Jun Xia, 2022. "Research on the ECC of Chengdu–Chongqing’s Urban Agglomeration in China Based on System Dynamics," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    2. Zhenggen Fan & Ji Liu & Hu Yu & Hua Lu & Puwei Zhang, 2022. "Spatial-Temporal Pattern and Influencing Factors of Land Ecological Carrying Capacity in The National Pilot Zones for Ecological Conservation in China," Land, MDPI, vol. 11(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    2. Yujie Wei & Ran Wang & Xin Zhuo & Haoying Feng, 2021. "Research on Comprehensive Evaluation and Coordinated Development of Water Resources Carrying Capacity in Qingjiang River Basin, China," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    3. Lvxiang Deng & Songling Chen & Bryan Karney, 2012. "Comprehensive Evaluation Method of Urban Water Resources Utilization Based on Dynamic Reduct," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2733-2745, August.
    4. Haijun Bao & Chengcheng Wang & Lu Han & Shaohua Wu & Liming Lou & Baogen Xu & Yanfang Liu, 2020. "Resources and Environmental Pressure, Carrying Capacity, And Governance: A Case Study of Yangtze River Economic Belt," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    5. Junfeng Yang & Kun Lei & Soonthiam Khu & Wei Meng, 2015. "Assessment of Water Resources Carrying Capacity for Sustainable Development Based on a System Dynamics Model: A Case Study of Tieling City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 885-899, February.
    6. Xiao-meng Song & Fan-zhe Kong & Che-sheng Zhan, 2011. "Assessment of Water Resources Carrying Capacity in Tianjin City of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 857-873, February.
    7. Zhiying Shao & Fengping Wu & Fang Li & Yue Zhao & Xia Xu, 2020. "System Dynamics Model for Evaluating Socio-Economic Impacts of Different Water Diversion Quantity from Transboundary River Basins—A Case Study of Xinjiang," IJERPH, MDPI, vol. 17(23), pages 1-24, December.
    8. Zhimin Zhang & Guoli Ou & Ayman Elshkaki & Ruilin Liu, 2022. "Evaluation of Regional Carrying Capacity under Economic-Social-Resource-Environment Complex System: A Case Study of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    9. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    10. Edyta Kiedrzyńska & Marcin Kiedrzyński & Maciej Zalewski, 2015. "Sustainable floodplain management for flood prevention and water quality improvement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 955-977, March.
    11. László Könnyid & Zsuzsanna Váradi & Zsombor Nagy & Noémi Ilyés & Orsolya H. Horváth, 2022. "The Changes in the Demographic Characteristics and Spatial Structure of Tourism Demand in the West Balaton Region’s Spa Cities," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    12. Aarras, Nina & Rönkä, Mia & Kamppinen, Matti & Tolvanen, Harri & Vihervaara, Petteri, 2014. "Environmental technology and regional sustainability – The role of life-based design," Technology in Society, Elsevier, vol. 36(C), pages 52-59.
    13. Olivier, Michelle M. & Howard, Johnathon L. & Wilson, Ben P. & Robinson, Wayne A., 2018. "Correlating Localisation and Sustainability and Exploring the Causality of the Relationship," Ecological Economics, Elsevier, vol. 146(C), pages 749-765.
    14. Siyu Gao & Haixiang Guo & Jing Yu, 2021. "Urban Water Inclusive Sustainability: Evidence from 38 Cities in the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 13(4), pages 1-32, February.
    15. Silvio Franco & Barbara Pancino & Angelo Martella, 2021. "Mapping National Environmental Sustainability Distribution by Ecological Footprint: The Case of Italy," Sustainability, MDPI, vol. 13(15), pages 1-14, August.
    16. Michelle M. Olivier & Benjamin P. Wilson & Jonathon L. Howard, 2016. "Measuring Localisation Regionally to Form a Bhutanese Index," Sustainability, MDPI, vol. 8(7), pages 1-19, July.
    17. Marco Filippo Torchio & Umberto Lucia & Giulia Grisolia, 2020. "Economic and Human Features for Energy and Environmental Indicators: A Tool to Assess Countries’ Progress towards Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    18. Hongtao Jia & Lei Zhu & Jing Du, 2022. "Fuzzy Comprehensive Evaluation Model of the Farmers’ Sense of Gain in the Provision of Rural Infrastructures: The Case of Tourism-Oriented Rural Areas of China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    19. Hua Liu & Dan-Yang Li & Rong Ma & Ming Ma, 2022. "Assessing the Ecological Risks Based on the Three-Dimensional Ecological Footprint Model in Gansu Province," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    20. P. Sikandar & E. Christen, 2012. "Geoelectrical Sounding for the Estimation of Hydraulic Conductivity of Alluvial Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1201-1215, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4568-:d:791674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.