IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p8211-d1482353.html
   My bibliography  Save this article

Competence in Unsustainability Resolution—A New Paradigm

Author

Listed:
  • Angela Dikou

    (Independent Researcher, 11743 Athens, Greece)

Abstract

Environmental unsustainability in coupled human–nature systems is accumulating. Yet, there is no accreditation requirement for unsustainability resolution competency in higher education. Thus, a new and complete representation of the pedagogy for unsustainability resolution competence has been induced, using what is already available and working. The nature of unsustainability problems points to collaboration and holism attitudes. Resolution requires social skills, namely participation, perspective taking, and the generation of social capital, and cognitive skills, namely project management, knowledge building, and modeling. Resolution is scaffolded in three successive steps during the collaborative process within a systems approach: (i) collapse complexity; (ii) select a path/trajectory; and (iii) operationalize a plan. The hierarchically cumulative abilities toward unsustainability resolution competence are to source data and information about the coupled human–nature system (SEARCH); simplify the dynamics of the human–nature system (SIMULATE); generate and test alternative paths and end points for the coupled human–nature system (STRATEGIZE); chose a favorable path among the available alternatives (SELECT); operationalize the favorable path into a plan (strategy–program–project) with measurable management and policy objectives (IMPLEMENT); and develop criteria/indicators to monitor and adjust when necessary the implementation of the plan toward system goals (STEER). For each one of these learning objectives, the Bloom’s taxonomy and a progression from behaviorist through cognitivist to constructivist tools apply. The development of mastery requires the comparison and contrast of many similar cases with the same unsustainability problem and project-based learning with specific cases for deep learning. In this way, it is the resolutions of unsustainability in human–nature systems that will be accumulating.

Suggested Citation

  • Angela Dikou, 2024. "Competence in Unsustainability Resolution—A New Paradigm," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8211-:d:1482353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/8211/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/8211/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rebekah R. Brown & Ana Deletic & Tony H. F. Wong, 2015. "Interdisciplinarity: How to catalyse collaboration," Nature, Nature, vol. 525(7569), pages 315-317, September.
    2. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    3. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    4. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    5. Forrester, Jay W., 1992. "Policies, decisions and information sources for modeling," European Journal of Operational Research, Elsevier, vol. 59(1), pages 42-63, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abduraupov, Rustam & Akhmadjanova, Gulmira & Ibragimov, Abdulla & Bala, B.K. & Sidique, Shaufique F. & Makhmudov, Miraziz & Angelina, Kim, 2022. "Modeling of water management for cotton production in Uzbekistan," Agricultural Water Management, Elsevier, vol. 265(C).
    2. Langarudi, Saeed P. & Maxwell, Connie M. & Bai, Yining & Hanson, Austin & Fernald, Alexander, 2019. "Does Socioeconomic Feedback Matter for Water Models?," Ecological Economics, Elsevier, vol. 159(C), pages 35-45.
    3. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    4. Gohari, Alireza & Savari, Peyman & Eslamian, Saeid & Etemadi, Nematollah & Keilmann-Gondhalekar, Daphne, 2022. "Developing a system dynamic plus framework for water-land-society nexus modeling within urban socio-hydrologic systems," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    5. Armenia, Stefano & Franco, Eduardo & Iandolo, Francesca & Maielli, Giuliano & Vito, Pietro, 2024. "Zooming in and out the landscape: Artificial intelligence and system dynamics in business and management," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    6. Huanhuan Qin & Chunmiao Zheng & Xin He & Jens Christian Refsgaard, 2019. "Analysis of Water Management Scenarios Using Coupled Hydrological and System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4849-4863, November.
    7. Junfeng Yang & Kun Lei & Soonthiam Khu & Wei Meng, 2015. "Assessment of Water Resources Carrying Capacity for Sustainable Development Based on a System Dynamics Model: A Case Study of Tieling City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 885-899, February.
    8. Egerer, Sabine & Cotera, Rodrigo Valencia & Celliers, Louis & Costa, María Máñez, 2021. "A leverage points analysis of a qualitative system dynamics model for climate change adaptation in agriculture," Agricultural Systems, Elsevier, vol. 189(C).
    9. Farhad Yazdandoost & Sogol Moradian & Ardalan Izadi, 2020. "Evaluation of Water Sustainability under a Changing Climate in Zarrineh River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4831-4846, December.
    10. Rakhshinda Bano & Mehdi Khiadani & Yong Sebastian Nyam, 2022. "System Archetypes Underlying Formal-Informal Urban Water Supply Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4995-5010, October.
    11. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1413-1434, March.
    12. Mónica de Castro-Pardo & Fernando Pérez-Rodríguez & José María Martín-Martín & João C. Azevedo, 2019. "Planning for Democracy in Protected Rural Areas: Application of a Voting Method in a Spanish-Portuguese Reserve," Land, MDPI, vol. 8(10), pages 1-17, October.
    13. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    14. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.
    15. Vincenzo Vignieri, 2021. "Crowdsourcing as a mode of open innovation: Exploring drivers of success of a multisided platform through system dynamics modelling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(1), pages 108-124, January.
    16. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    17. Marco Franchini & Ernesto Ventaglio & Alessandra Bonoli, 2011. "A Procedure for Evaluating the Compatibility of Surface Water Resources with Environmental and Human Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3613-3634, November.
    18. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    19. repec:eco:journ2:2017-04-06 is not listed on IDEAS
    20. Walters, Jeffrey P. & Archer, David W. & Sassenrath, Gretchen F. & Hendrickson, John R. & Hanson, Jon D. & Halloran, John M. & Vadas, Peter & Alarcon, Vladimir J., 2016. "Exploring agricultural production systems and their fundamental components with system dynamics modelling," Ecological Modelling, Elsevier, vol. 333(C), pages 51-65.
    21. H A Akkermans & K E van Oorschot, 2005. "Relevance assumed: a case study of balanced scorecard development using system dynamics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 931-941, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8211-:d:1482353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.