IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i2p487-504.html
   My bibliography  Save this article

SPI Modes of Drought Spatial and Temporal Variability in Portugal: Comparing Observations, PT02 and GPCC Gridded Datasets

Author

Listed:
  • Tayeb Raziei
  • Diogo Martins
  • Isabella Bordi
  • João Santos
  • Maria Portela
  • Luis Pereira
  • Alfonso Sutera

Abstract

Regional drought modes in Portugal are identified applying the Principal Component Analysis (PCA) and Varimax rotation to the Standardized Precipitation Index (SPI) computed on various time scales using the three precipitation datasets covering the period 1950–2003: (i) The observation dataset composed of 193 rain-gauges distributed almost uniformly over the country, (ii) the PT02 high-resolution gridded dataset provided by the Portuguese Meteorological Institute, and (iii) the GPCC dataset with 0.5° spatial resolution. Results suggest that the three datasets well agree in identifying the principal drought modes, i.e. two sub-regions in northern and southern Portugal with independent climate variability. The two sub-regions appear stable when the SPI time scale is varied from 3- to 24-month, and the associated rotated principal component scores (RPCs) do not show any statistically significant linear trend. The degree of similarity between the rotated loadings or REOFs of different SPI time scales for the three used datasets was examined through the congruence coefficients, whose results show a good agreement between the three datasets in capturing the main Portuguese sub-regions. A third spatial mode in central-eastern Portugal was identified for SPI-24 in PT02, with the associated RPC characterized by a statistically significant downward trend. The stability of the identified sub-regions as a function of studied time period was also evaluated applying the same methodologies to a set of three different time windows and it was found that the southern sub-region is very stable but the northern and central-eastern sub-regions are very sensitive to the selected time window. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Tayeb Raziei & Diogo Martins & Isabella Bordi & João Santos & Maria Portela & Luis Pereira & Alfonso Sutera, 2015. "SPI Modes of Drought Spatial and Temporal Variability in Portugal: Comparing Observations, PT02 and GPCC Gridded Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 487-504, January.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:487-504
    DOI: 10.1007/s11269-014-0690-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0690-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0690-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald Wilhite & Mark Svoboda & Michael Hayes, 2007. "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 763-774, May.
    2. Paulo, A.A. & Ferreira, E. & Coelho, C. & Pereira, L.S., 2005. "Drought class transition analysis through Markov and Loglinear models, an approach to early warning," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 59-81, August.
    3. Tayeb Raziei & Isabella Bordi & Luis Pereira, 2013. "Regional Drought Modes in Iran Using the SPI: The Effect of Time Scale and Spatial Resolution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1661-1674, April.
    4. repec:ucp:bkecon:9780226316529 is not listed on IDEAS
    5. B. Bonaccorso & I. Bordi & A. Cancelliere & G. Rossi & A. Sutera, 2003. "Spatial Variability of Drought: An Analysis of the SPI in Sicily," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(4), pages 273-296, August.
    6. Sergio Vicente-Serrano, 2006. "Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 37-60, February.
    7. Tayeb Raziei & Isabella Bordi & Luis Pereira, 2011. "An Application of GPCC and NCEP/NCAR Datasets for Drought Variability Analysis in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1075-1086, March.
    8. Brunella Bonaccorso & David Peres & Antonino Cancelliere & Giuseppe Rossi, 2013. "Large Scale Probabilistic Drought Characterization Over Europe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1675-1692, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Paulo & Diogo Martins & Luís Santos Pereira, 2016. "Influence of Precipitation Changes on the SPI and Related Drought Severity. An Analysis Using Long-Term Data Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5737-5757, December.
    2. Abdelaaziz Merabti & Diogo S. Martins & Mohamed Meddi & Luis S. Pereira, 2018. "Spatial and Time Variability of Drought Based on SPI and RDI with Various Time Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1087-1100, February.
    3. Jin Huang & Yadong Lei & Fangmin Zhang & Zhenghua Hu, 2017. "Spatio-temporal analysis of meteorological disasters affecting rice, using multi-indices, in Jiangsu province, Southeast China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(4), pages 661-672, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    2. Brunella Bonaccorso & David Peres & Antonio Castano & Antonino Cancelliere, 2015. "SPI-Based Probabilistic Analysis of Drought Areal Extent in Sicily," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 459-470, January.
    3. Tayeb Raziei & Isabella Bordi & Luis Pereira, 2013. "Regional Drought Modes in Iran Using the SPI: The Effect of Time Scale and Spatial Resolution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1661-1674, April.
    4. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    5. Ana Paulo & Luis Pereira, 2008. "Stochastic Prediction of Drought Class Transitions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1277-1296, September.
    6. G. Buttafuoco & T. Caloiero & R. Coscarelli, 2015. "Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 557-573, January.
    7. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    8. Ana Paulo & Luis Pereira, 2007. "Prediction of SPI Drought Class Transitions Using Markov Chains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1813-1827, October.
    9. Tayeb Raziei & Isabella Bordi & Luis Pereira, 2011. "An Application of GPCC and NCEP/NCAR Datasets for Drought Variability Analysis in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1075-1086, March.
    10. Coral Salvador & Raquel Nieto & Cristina Linares & Julio Díaz & Luis Gimeno, 2020. "Quantification of the Effects of Droughts on Daily Mortality in Spain at Different Timescales at Regional and National Levels: A Meta-Analysis," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    11. Yuan-Chien Lin & En-Dian Kuo & Wan-Ju Chi, 2021. "Analysis of Meteorological Drought Resilience and Risk Assessment of Groundwater Using Signal Analysis Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 179-197, January.
    12. E. Preziosi & A. Bon & E. Romano & A. Petrangeli & S. Casadei, 2013. "Vulnerability to Drought of a Complex Water Supply System. The Upper Tiber Basin Case Study (Central Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4655-4678, October.
    13. Abdol Rassoul Zarei & Mohammad Mehdi Moghimi & Mohammad Reza Mahmoudi, 2016. "Parametric and Non-Parametric Trend of Drought in Arid and Semi-Arid Regions Using RDI Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5479-5500, November.
    14. Tayeb Raziei & Bahram Saghafian & Ana Paulo & Luis Pereira & Isabella Bordi, 2009. "Spatial Patterns and Temporal Variability of Drought in Western Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 439-455, February.
    15. Alireza Shokoohi & Reza Morovati, 2015. "Basinwide Comparison of RDI and SPI Within an IWRM Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2011-2026, April.
    16. Emre Topçu, 2022. "Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 697-723, May.
    17. Kumar Amrit & Rajendra P. Pandey & Surendra K. Mishra, 2018. "Characteristics of meteorological droughts in northwestern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 561-582, November.
    18. Yong-Wei Liu & Wen Wang & Yi-Ming Hu & Zhong-Min Liang, 2014. "Drought assessment and uncertainty analysis for Dapoling basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1613-1627, December.
    19. Fadhilah Yusof & Foo Hui-Mean & Jamaludin Suhaila & Zulkifli Yusof, 2013. "Characterisation of Drought Properties with Bivariate Copula Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4183-4207, September.
    20. Mohammad Ghadami & Tayeb Raziei & Mohsen Amini & Reza Modarres, 2020. "Regionalization of drought severity–duration index across Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2813-2827, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:487-504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.