IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i2p295-311.html
   My bibliography  Save this article

Iterative Framework for Robust Reclaimed Wastewater Allocation in a Changing Environment Using Multi-Criteria Decision Making

Author

Listed:
  • Yeonjoo Kim
  • Eun-Sung Chung
  • Sang-Mook Jun

Abstract

In this study, an iterative framework for robust reclaimed wastewater allocation (IFRWA) was developed to consider multiple climate change scenarios using multi-criteria decision making (MCDM) methods. Each iteration begins with the assumption that an additional unit of water quantity is allocated to reclaimed wastewater (RWW) sites. Based on these allocation conditions, hydrologic simulations are performed and evaluated using the incremental alternative evaluation index (IAEI) to rank the best sites for each unit water quantity. The minimax regret strategy is employed to consider the uncertainty inherent in the climate change scenarios. The consequent robust ranking of the IAEIs is applied to determine the final allocation of the unit water quantity in a given iteration. This iteration continues until the total allocated water quantity satisfies the maximum available capacity of RWW for use in the studied watershed. Our results show that this incremental and robust framework can be used to determine the reasonable capacities of RWW at multiple sites within the watershed by considering various aspects of RWW use, including the water quantity and the socio-economic aspects of decision making. A choice and concentration strategy based on IAEIs should be employed to achieve the maximum utility considering the physical constraints (capacity and cost). If economic considerations, such as the cost of construction and management, are included, this framework can be applied to real problems. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Yeonjoo Kim & Eun-Sung Chung & Sang-Mook Jun, 2015. "Iterative Framework for Robust Reclaimed Wastewater Allocation in a Changing Environment Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 295-311, January.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:295-311
    DOI: 10.1007/s11269-014-0891-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0891-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0891-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julie Rozenberg & Céline Guivarch & Robert Lempert & Stéphane Hallegatte, 2014. "Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation," Climatic Change, Springer, vol. 122(3), pages 509-522, February.
    2. Wang, Lizhong & Fang, Liping & Hipel, Keith W., 2008. "Basin-wide cooperative water resources allocation," European Journal of Operational Research, Elsevier, vol. 190(3), pages 798-817, November.
    3. Lei Jin & Guohe Huang & Yurui Fan & Xianghui Nie & Guanhui Cheng, 2012. "A Hybrid Dynamic Dual Interval Programming for Irrigation Water Allocation under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1183-1200, March.
    4. Kristie Ebi, 2012. "Key themes in the Working Group II contribution to the Intergovernmental Panel on Climate Change 5th assessment report," Climatic Change, Springer, vol. 114(3), pages 417-426, October.
    5. Yeonjoo Kim & Eun-Sung Chung, 2012. "Integrated assessment of climate change and urbanization impact on adaptation strategies: a case study in two small Korean watersheds," Climatic Change, Springer, vol. 115(3), pages 853-872, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yohannes Hagos Subagadis & Niels Schütze & Jens Grundmann, 2016. "A Fuzzy-Stochastic Modeling Approach for Multiple Criteria Decision Analysis of Coupled Groundwater-Agricultural Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2075-2095, April.
    2. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    3. Husnain Haider & Pushpinder Singh & Waris Ali & Solomon Tesfamariam & Rehan Sadiq, 2015. "Sustainability Evaluation of Surface Water Quality Management Options in Developing Countries: Multicriteria Analysis Using Fuzzy UTASTAR Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2987-3013, June.
    4. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    2. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    3. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    4. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    5. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    6. Mehran Homayounfar & Sai Lai & Mehdi Zommorodian & Amin Oroji & Arman Ganji & Sara Kaviani, 2015. "Developing a Non-Discrete Dynamic Game Model and Corresponding Monthly Collocation Solution Considering Variability in Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2599-2618, June.
    7. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    8. Stephane Hallegatte & Mook Bangalore & Laura Bonzanigo & Marianne Fay & Tamaro Kane & Ulf Narloch & Julie Rozenberg & David Treguer & Adrien Vogt-Schilb, 2016. "Shock Waves," World Bank Publications - Books, The World Bank Group, number 22787.
    9. Zhongwen Xu & Liming Yao & Yin Long, 2020. "Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives," Land, MDPI, vol. 9(11), pages 1-17, November.
    10. Kai Zhang & Haishu Lu & Bin Wang, 2024. "Benefit Distribution Mechanism of a Cooperative Alliance for Basin Water Resources from the Perspective of Cooperative Game Theory," Sustainability, MDPI, vol. 16(16), pages 1-33, August.
    11. Evelina Trutnevyte & Céline Guivarch & Robert Lempert & Neil Strachan, 2016. "Reinvigorating the scenario technique to expand uncertainty consideration," Climatic Change, Springer, vol. 135(3), pages 373-379, April.
    12. Meraj Sohrabi & Zeynab Banoo Ahani Amineh & Mohammad Hossein Niksokhan & Hossein Zanjanian, 2023. "A framework for optimal water allocation considering water value, strategic management and conflict resolution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1582-1613, February.
    13. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    14. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    15. Elleuch, Mohamed Ali & Anane, Makram & Euchi, Jalel & Frikha, Ahmed, 2019. "Hybrid fuzzy multi-criteria decision making to solve the irrigation water allocation problem in the Tunisian case," Agricultural Systems, Elsevier, vol. 176(C).
    16. Li Pan & Xudong Chen & Lu Zhao & Anran Xiao, 2019. "Does Information Asymmetry Impact Sub-Regions’ Cooperation of Regional Water Resource Allocation?," IJERPH, MDPI, vol. 16(21), pages 1-16, November.
    17. repec:spo:wpmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    18. Hidayatno, Akhmad & Jafino, Bramka Arga & Setiawan, Andri D. & Purwanto, Widodo Wahyu, 2020. "When and why does transition fail? A model-based identification of adoption barriers and policy vulnerabilities for transition to natural gas vehicles," Energy Policy, Elsevier, vol. 138(C).
    19. Galioto, Francesco & Battilani, Adriano, 2021. "Agro-economic simulation for day by day irrigation scheduling optimisation," Agricultural Water Management, Elsevier, vol. 248(C).
    20. Anil Markandya, 2017. "State of Knowledge on Climate Change, Water, and Economics," World Bank Publications - Reports 26491, The World Bank Group.
    21. Noémie Neverre & Patrice Dumas, 2016. "Projecting Basin-Scale Distributed Irrigation and Domestic Water Demands and Values: A Generic Method for Large-Scale Modeling," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-28, December.
    22. Paucar-Caceres, A. & Bandala, E.R. & Wright, G.H., 2017. "The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder regionAuthor-Name: Duran-Encalada, J.A," European Journal of Operational Research, Elsevier, vol. 256(2), pages 567-581.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:295-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.