IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v20y2006i1p77-90.html
   My bibliography  Save this article

Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach

Author

Listed:
  • Purna Nayak
  • Y. Rao
  • K. Sudheer

Abstract

Forecasting the ground water level fluctuations is an important requirement for planning conjunctive use in any basin. This paper reports a research study that investigates the potential of artificial neural network technique in forecasting the groundwater level fluctuations in an unconfined coastal aquifer in India. The most appropriate set of input variables to the model are selected through a combination of domain knowledge and statistical analysis of the available data series. Several ANN models are developed that forecasts the water level of two observation wells. The results suggest that the model predictions are reasonably accurate as evaluated by various statistical indices. An input sensitivity analysis suggested that exclusion of antecedent values of the water level time series may not help the model to capture the recharge time for the aquifer and may result in poorer performance of the models. In general, the results suggest that the ANN models are able to forecast the water levels up to 4 months in advance reasonably well. Such forecasts may be useful in conjunctive use planning of groundwater and surface water in the coastal areas that help maintain the natural water table gradient to protect seawater intrusion or water logging condition. Copyright Springer Science + Business Media, Inc. 2006

Suggested Citation

  • Purna Nayak & Y. Rao & K. Sudheer, 2006. "Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 77-90, February.
  • Handle: RePEc:spr:waterr:v:20:y:2006:i:1:p:77-90
    DOI: 10.1007/s11269-006-4007-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-006-4007-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-006-4007-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:20:y:2006:i:1:p:77-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.