IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i11d10.1007_s11269-014-0696-x.html
   My bibliography  Save this article

Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China

Author

Listed:
  • Jian Sha

    (Nankai University)

  • Zeli Li

    (Nankai University)

  • Dennis P. Swaney

    (Cornell University)

  • Bongghi Hong

    (Cornell University)

  • Wei Wang

    (Tianjin Meteorological Science Research Institute)

  • Yuqiu Wang

    (Nankai University)

Abstract

Excessive nitrogen loads and subsequent eutrophication risk have led to a series of critical water quality problems in Chinese watersheds. To address this issue, a modeling approach is useful for quantifying nitrogen sources, assessing source apportionment, and guiding management responses. In this study, we modeled the main hydrochemical processes of the Lian River watershed located in the south of China using the Regional Nutrient Management (ReNuMa) model, a model derived from the Generalized Watershed Loading Function (GWLF) model and incorporating Net Anthropogenic Nitrogen Inputs (NANI) to estimate runoff nitrogen concentrations. An informal Bayesian method, the Generalized Likelihood Uncertainty Estimation (GLUE) procedure, was applied for model calibration and uncertainty analysis. The resulting modeled monthly total nitrogen fluxes have high Nash-Sutcliff coefficients (>0.85) for the calibration (2005–2009) and verification (2003, 2004 and 2010) periods, representing an acceptable goodness-of-fit. The model outputs were further processed using multivariate statistical analysis to determine latent rules of nitrogen source apportionment under different circumstances, including different water regimes, seasonal patterns, and loading levels. The main nitrogen contributions in different natural and management-driven conditions have been identified, and appear to be significant for supporting decision-making priorities. We find that the ReNuMa model, with its Bayesian procedure and the linkage of subsequent multivariate statistical analysis, represents a useful approach with applicability within China and a great potential to be extended elsewhere.

Suggested Citation

  • Jian Sha & Zeli Li & Dennis P. Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:11:d:10.1007_s11269-014-0696-x
    DOI: 10.1007/s11269-014-0696-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-014-0696-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-014-0696-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    2. Shanmugam Kumar & Shankar Narasimhan & S. Murty Bhallamudi, 2010. "Parameter Estimation in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1251-1272, April.
    3. Niraula, Rewati & Kalin, Latif & Srivastava, Puneet & Anderson, Christopher J., 2013. "Identifying critical source areas of nonpoint source pollution with SWAT and GWLF," Ecological Modelling, Elsevier, vol. 268(C), pages 123-133.
    4. Boini Narsimlu & Ashvin Gosain & Baghu Chahar, 2013. "Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3647-3662, August.
    5. Björn Tetzlaff & Frank Wendland, 2012. "Modelling Sediment Input to Surface Waters for German States with MEPhos: Methodology, Sensitivity and Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 165-184, January.
    6. Chih-Da Wu & Chi-Chuan Cheng & Hann-Chung Lo & Yeong-Keung Chen, 2010. "Application of SEBAL and Markov Models for Future Stream Flow Simulation Through Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3773-3797, November.
    7. T. C. Tso, 2004. "Agriculture of the future," Nature, Nature, vol. 428(6979), pages 215-217, March.
    8. Rabia Koklu & Bulent Sengorur & Bayram Topal, 2010. "Water Quality Assessment Using Multivariate Statistical Methods—A Case Study: Melen River System (Turkey)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 959-978, March.
    9. Chun-hsu Lin & Te-hsiu Huang & Daigee Shaw, 2010. "Applying Water Quality Modeling to Regulating Land Development in a Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 629-640, March.
    10. Funda Dökmen & Zafer Aslan, 2013. "Evaluation of the Parameters of Water Quality with Wavelet Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4977-4988, November.
    11. Johanna Olsson & Lotta Andersson, 2007. "Possibilities and problems with the use of models as a communication tool in water resource management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 97-110, January.
    12. R. Singh & R. Panda & K. Satapathy & S. Ngachan, 2012. "Runoff and Sediment Yield Modelling for a Treated Hilly Watershed in Eastern Himalaya Using the Water Erosion Prediction Project Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 643-665, February.
    13. Betül Saf, 2009. "Regional Flood Frequency Analysis Using L-Moments for the West Mediterranean Region of Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 531-551, February.
    14. Ayman Awadallah & Mohsen Yousry, 2012. "Identifying Homogeneous Water Quality Regions in the Nile River Using Multivariate Statistical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2039-2055, May.
    15. Pei Zhao & Xiangyu Tang & Jialiang Tang & Chao Wang, 2013. "Assessing Water Quality of Three Gorges Reservoir, China, Over a Five-Year Period From 2006 to 2011," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4545-4558, October.
    16. Rong Zhang & Celso Santos & Madalena Moreira & Paula Freire & João Corte-Real, 2013. "Automatic Calibration of the SHETRAN Hydrological Modelling System Using MSCE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4053-4068, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hairong Zhang & Jianzhong Zhou & Lei Ye & Xiaofan Zeng & Yufan Chen, 2015. "Lower Upper Bound Estimation Method Considering Symmetry for Construction of Prediction Intervals in Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5505-5519, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Sha & Zeli Li & Dennis Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
    2. Yuankun Wang & Dong Sheng & Dong Wang & Huiqun Ma & Jichun Wu & Feng Xu, 2014. "Variable Fuzzy Set Theory to Assess Water Quality of the Meiliang Bay in Taihu Lake Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 867-880, February.
    3. E. Molina-Navarro & S. Martínez-Pérez & A. Sastre-Merlín & R. Bienes-Allas, 2014. "Catchment Erosion and Sediment Delivery in a Limno-Reservoir Basin Using a Simple Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2129-2143, June.
    4. Ana Gomes & José Pires & Sónia Figueiredo & Rui Boaventura, 2014. "Optimization of River Water Quality Surveys by Multivariate Analysis of Physicochemical, Bacteriological and Ecotoxicological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1345-1361, March.
    5. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    6. Lazhar Belkhiri & Tahoora Narany, 2015. "Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2073-2089, April.
    7. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    8. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    9. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    10. Sanjeet Kumar & Ashok Mishra & Umesh Kumar Singh, 2023. "Assessment of Land Cover Changes and Climate Variability Effects on Catchment Hydrology Using a Physically Distributed Model," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    11. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    12. Mohamad Najib Ibrahim, 2022. "Assessment of the Uncertainty Associated with Statistical Modeling of Precipitation Extremes for Hydrologic Engineering Applications in Amman, Jordan," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    13. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    14. Javier Senent-Aparicio & Sitian Liu & Julio Pérez-Sánchez & Adrián López-Ballesteros & Patricia Jimeno-Sáez, 2018. "Assessing Impacts of Climate Variability and Reforestation Activities on Water Resources in the Headwaters of the Segura River Basin (SE Spain)," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    15. Jie Zhang & Jia Liu & Guilong Li & Meng Wu, 2024. "Screening Potential Nitrification Inhibitors through a Structure–Activity Relationship Study—The Case of Cinnamic Acid Derivatives," Sustainability, MDPI, vol. 16(13), pages 1-10, July.
    16. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    17. L.J. Li & D.H. Zeng & R. Mao & Z.Y. Yu, 2012. "Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(10), pages 446-451.
    18. Sandra Mourato & Madalena Moreira & João Corte-Real, 2015. "Water Resources Impact Assessment Under Climate Change Scenarios in Mediterranean Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2377-2391, May.
    19. Kulwinder Parmar & Rashmi Bhardwaj, 2015. "River Water Prediction Modeling Using Neural Networks, Fuzzy and Wavelet Coupled Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 17-33, January.
    20. Xuerou Weng & Boen Zhang & Jinxin Zhu & Dagang Wang & Jianxiu Qiu, 2023. "Assessing Land Use and Climate Change Impacts on Soil Erosion Caused by Water in China," Sustainability, MDPI, vol. 15(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:11:d:10.1007_s11269-014-0696-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.