IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v58y2012i10id6339-pse.html
   My bibliography  Save this article

Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China

Author

Listed:
  • L.J. Li

    (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, P.R. China
    State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • D.H. Zeng

    (State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China
    Daqinggou Ecological Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • R. Mao

    (State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • Z.Y. Yu

    (State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China
    Daqinggou Ecological Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

Abstract

A factorial nitrogen (N) × phosphorus (P) addition experiment was conducted to evaluate responses of leaf nutrient resorption to increased soil N and P availability in a semiarid grassland in Keerqin Sandy Lands, China. Four plant species were selected, among which Artemisia scoparia and Chenopodium acuminatum were dominant species in the control and P-added plots, and Cannabis sativa and Phragmites communis were dominant in the N- and N + P-treated plots. Results showed that N and P resorption varied substantially among species (P < 0.01). A general trend of decrease in N resorption efficiency (NRE) and N resorption proficiency (NRP) was observed in response to increased soil N availability for all species, except P. communis only for NRE. Similarly, P resorption proficiency (PRP) decreased in response to P addition for all species, whereas P resorption efficiency (PRE) was not affected by P addition. Species responded differently in terms of PRE and PRP to N addition, whereas no changes in NRE and NRP occurred in response to P addition except P. communis for NRE. Our results suggest that increased soil nutrient availability can influence plant-mediated nutrient cycling directly by changing leaf nutrient resorption and indirectly by altering species composition in the sandy grassland.

Suggested Citation

  • L.J. Li & D.H. Zeng & R. Mao & Z.Y. Yu, 2012. "Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(10), pages 446-451.
  • Handle: RePEc:caa:jnlpse:v:58:y:2012:i:10:id:6339-pse
    DOI: 10.17221/6339-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/6339-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/6339-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/6339-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    2. P. Lü & J.W. Zhang & L.B. Jin & W. Liu & S.T. Dong & P. Liu, 2012. "Effects of nitrogen application stage on grain yield and nitrogen use efficiency of high-yield summer maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(5), pages 211-216.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Motoko Inatomi & Tomohiro Hajima & Akihiko Ito, 2019. "Fraction of nitrous oxide production in nitrification and its effect on total soil emission: A meta-analysis and global-scale sensitivity analysis using a process-based model," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-21, July.
    2. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    3. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    5. Chao-Chen Hu & Xue-Yan Liu & Avery W. Driscoll & Yuan-Wen Kuang & E. N. Jack Brookshire & Xiao-Tao Lü & Chong-Juan Chen & Wei Song & Rong Mao & Cong-Qiang Liu & Benjamin Z. Houlton, 2024. "Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    7. Xianhui S. Wan & Hua-Xia Sheng & Li Liu & Hui Shen & Weiyi Tang & Wenbin Zou & Min N. Xu & Zhenzhen Zheng & Ehui Tan & Mingming Chen & Yao Zhang & Bess B. Ward & Shuh-Ji Kao, 2023. "Particle-associated denitrification is the primary source of N2O in oxic coastal waters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Marylin Bejarano-Castillo & Julio Campo & Lilia L Roa-Fuentes, 2015. "Effects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-12, December.
    9. Yukio Watanabe & Wataru Aoki & Mitsuyoshi Ueda, 2021. "Sustainable Biological Ammonia Production towards a Carbon-Free Society," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    10. James Shortle & Richard D. Horan, 2017. "Nutrient Pollution: A Wicked Challenge for Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-39, April.
    11. Maire, Vincent & Soussana, Jean-François & Gross, Nicolas & Bachelet, Bruno & Pagès, Loïc & Martin, Raphaël & Reinhold, Tanja & Wirth, Christian & Hill, David, 2013. "Plasticity of plant form and function sustains productivity and dominance along environment and competition gradients. A modeling experiment with Gemini," Ecological Modelling, Elsevier, vol. 254(C), pages 80-91.
    12. Florian Rabitz & Alin Olteanu & Jurgita Jurkevičienė & Agnė Budžytė, 2021. "A topic network analysis of the system turn in the environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2107-2140, March.
    13. Gao, Wei & Hong, Bongghi & Swaney, Dennis P. & Howarth, Robert W. & Guo, Huaicheng, 2016. "A system dynamics model for managing regional N inputs from human activities," Ecological Modelling, Elsevier, vol. 322(C), pages 82-91.
    14. Chengpeng Zhang & Yu Ye & Xiuqi Fang & Hansunbai Li & Xue Zheng, 2020. "Coincidence Analysis of the Cropland Distribution of Multi-Sets of Global Land Cover Products," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
    15. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
    16. Jie Zhang & Jia Liu & Guilong Li & Meng Wu, 2024. "Screening Potential Nitrification Inhibitors through a Structure–Activity Relationship Study—The Case of Cinnamic Acid Derivatives," Sustainability, MDPI, vol. 16(13), pages 1-10, July.
    17. Yanan Li & Chengyu Wang & Tianye Wang & Yutao Liu & Shuxia Jia & Yunhang Gao & Shuxia Liu, 2020. "Effects of Different Fertilizer Treatments on Rhizosphere Soil Microbiome Composition and Functions," Land, MDPI, vol. 9(9), pages 1-19, September.
    18. Junxiang Cheng & Ligang Xu & Mingliang Jiang & Jiahu Jiang & Yanxue Xu, 2020. "Warming Increases Nitrous Oxide Emission from the Littoral Zone of Lake Poyang, China," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    19. Md Arifur Rahaman & Xiaoying Zhan & Qingwen Zhang & Shuqin Li & Shengmei Lv & Yuting Long & Hailing Zeng, 2020. "Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    20. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:58:y:2012:i:10:id:6339-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.